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Abstract

A linearized Euler solver for calculating unsteadyflows in turbomachinery blade
rows due to both incident gustsand blade motion is presented. The model accounts
for blade loading, bladegeometry, shock motion, and wake motion. Assuming that
the unsteadinessin the flow is small relative to the nonlinear mean solution, the
unsteady Euler equations can be linearized about the mean flow. This yields a set
of linear variable coefficient equations that describethe small amplitude harmonic
motion of the fluid. Theselinear equations are then discretizedon a computational
grid and solvedusing standard numerical techniques. For transonic flows, however,
one must usea linear discretization which is a conservativelinearization of the non-
linear discretizedEuler equations to ensurethat shock impulse loads are accurately
captured. Other important featuresof this analysis include a continuously deform-
ing grid which eliminates extrapolation errors and hence, increasesaccuracy,and a
new numerically exact, nonreflectingfar-field boundary condition treatment basedon
an eigenanalysisof the discretizedequations. Computational results are presented
which demonstrate the computational accuracy and efficiency of the method and
demonstrate the effectivenessof the deforming grid, far-field nonreflectingboundary
conditions, and shock capturing techniques. A comparisonof the present unsteady
flow predictionsto other numerical, semi-analytical,andexperimental methodsshows
excellentagreement.In addition, the linearizedEuler method presentedrequiresone
to two orders-of-magnitudelesscomputational time than traditional time-marching
techniquesmaking the presentmethod a viable designtool for aeroelasticanalyses.

ii



Contents

1 Introduction 6

1.1 Historical Development .......................... 6

1.2 Overview of Strategy Employed ...................... 9

1.3 Outline ................................... 11

Governing Equations 12

2.1 The Nonlinear Euler Equations ....................... 12

2.1.1 Continuity Equation ........................ 13

2.1.2 Momentum Equation ........................ 13

2.1.3 Energy Equation .......................... 14

2.1.4 Summary .............................. 14

2.2 Linearization Of The Euler Equations .................. 14

2.2.1 Computational Coordinate System ................ 15

2.2.2 Flow Decomposition ........................ 15

2.3 Linearized Euler Equations In Computational Domain ......... 17

2.4 Near-Field Boundary Conditions ..................... 21

2.4.1 Solid Surface ............................ 21
232.4.2 Periodicity .............................

2.5 Summary .................................. 23

3 Basic Numerical Integration Scheme 25

3.1 Unsteady Grid Generation ......................... 25

3.2 Basic Lax-Wendroff Integration Scheme (One-Dimensional Model) 27

3.3 Basic Lax-Wendroff Integration Scheme (Two-Dimensional Euler Equa-
3O

tions) ....................................

3.4 Smoothing .................................. 33

3.5 Properties of Ni's Scheme ......................... 34

3.5.1 Accuracy and Consistency ..................... 34

3.5.2 Stability ............................... 36

3.5.3 Conservation ............................ 40

3.6 Multiple-Grid Accelerator ......................... 41

3.7 Summary .................................. 44



2 CONTENTS

4 Far-Field Boundary Conditions

4.1

4.2

4.3

4.4

45

Introduction ................................. 45

Characteristics Of The Linearized Equations .............. 46

4.2.1 One-Dimensional Characteristics ................. 46

4.2.2 Two-Dimensional Characteristics ................. 48

4.2.3 Exact Numerical Characteristics ................. 50

Application of Far-Field Boundary Conditions .............. 55

4.3.1 One-Dimensional Nonreflecting Boundary Conditions ...... 55

4.3.2 Two-Dimensional Nonreflecting Boundary Conditions ..... 56

4.3.3 Numerically Exact Nonreflecting Boundary Conditions ..... 57

Summary .................................. 57

Results 59

5.1 Flat Plate .................................. 59

5.2 Tenth Standard Configuration ....................... 62

5.3 First Standard Configuration ....................... 69

5.4 Summary .............. .................... 72

6 Transonic Theory

6.1

6.2

6.3

6.4

76

Introduction ................................. 76

Theory .................................... 77

6.2.1 Flow Field Description ....................... 77

6.2.2 Numerical Modelling of the Shock Impulse ........... 78

6.2.3 Method I and Method II Linearizations ............. 81

6.2.4 Test for Linearized Conservation ................. 86

Results .................................... 86

6.3.1 Transonic Channel Flow ...................... 86

6.3.2 Unsteady Compressor and Fan Flows ............... 92

Summary .................................. 100

7 Conclusions And Future Considerations 101

7.1 Conclusions ................................. 101

7.2 Future Considerations ........................... 102



List of Figures

1.1

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

5.1

5.2

5.3

5.4

Geometry of a rectilinear cascade ..................... 9

Typical control volume ........................... 13

Left:Unsteady grid in computational coordinate system (_, 77). Right:

Unsteady grid in physical coordinate system (x, y) for the case of a

cascade of airfoils pitching about their midchords with an interblade

phase angle, _r, of 90*. Flow calculations are performed using a single

blade passage. Multiple passages are shown for clarity .......... 16

Classification of boundary types in computational domain ....... 21

Illustration of position vectors for flow tangency boundary condition 22

Illustration of the periodic boundary condition ............. 24

Typical computational cell for one-dimensional Ni scheme ....... 28

Nomenclature used in the description of the computational cells .... 31

Von-Neumann stability analysis, one-dimensional model equation: k

= 0.0, A = 0.6, 0.8, 1.0, 1.2 ......................... 38

Von-Neumann stability analysis, one-dimensional model equation: k

-- 1.0, )_ = 0.6, 0.8, 1.0, 1.2 ......................... 38

Eigenvalue analysis of one-dimensional model equation: k = 0.0, A =

0.6, 0.8, 1.0, 1.2 (periodic boundaries) .................. 40

Eigenvalue analysis of one-dimensional model equation: k = 1.0, )_ -

0.6, 0.8, 1.0, 1.2 (periodic boundaries) .................. 41

Eigenvalue analysis of one-dimensional model equation: k -- 0.025,

0.05, 0.1, A = 0.8 (nonreflecting boundaries) ............... 42

Perspective view of multiple grid acceleration levels ........... 43

Eigenvalues of upstream far-field modes of discretized equations .... 53

Analytically computed eigenvalues of far-field modes .......... 54

Unsteady pressure difference for flat plate cascade subjected to an in-

cident vortical gust: k = 2.221, _r = -180" ............... 61

Unsteady pressure difference for flat plate cascade undergoing an un-

steady plunging motion: k = 2.221, _r = -180" .............

Unsteady pressure difference for flat plate cascade subjected to an in-

cident vortical gust: k = 3.332, _ = 270* ................

Steady coefficient of pressure distribution, Tenth Standard Configura-

tion: M_¢¢

61

62

= 0.7, G = 1.0, e-co = 45 °, fl-oo = 55* .......... 63



4 LIST OF FIGURES

5.10

5.11

5.12

5.13

5.5 (top) Real unsteady pressure distribution for cascade of Tenth Stan-

dard Configuration airfoils subjected to an inlet vortical gust; (bottom)

Imaginary unsteady pressure distribution for cascade of Tenth Stan-

dard Configuration airfoils subjected to an inlet vortical gust: k =

1.287, _r = -90 ° .............................. 65

5.6 (top) Real unsteady pressure distribution for cascade of Tenth Stan-

dard Configuration airfoils undergoing an Unsteady plunging motion;

(bottom) Imaginary unsteady pressure distribution for cascade of Tenth

Standard Configuration airfoils undergoing an unsteady plunging mo-

tion: k = 1.287, a = -90 ° ......................... 66

5.7 (top) Real unsteady pressure distribution for cascade of Tenth Stan-

dard Configuration airfoils undergoing an unsteady plunging motion;

(bottom) Imaginary unsteady pressure distribution for cascade of Tenth

Standard Configuration airfoils undergoing an unsteady plunging mo-

tion: k = 2.573, a = -180 ° ........................ 67

5.8 Unsteady pressure contours for cascade of Tenth Standard Configura-

tion airfoils undergoing an unsteady plunging motion: k = 2.573, _z =

_180 ° .................................... 68

5.9 (top) Real unsteady pressure distribution for cascade of Tenth Stan-

dard Configuration airfoils undergoing an unsteady plunging motion;

(bottom) Imaginary unsteady pressure distribution for cascade of Tenth

Standard Configuration airfoils undergoing an unsteady plunging mo-

tion: k = 2.573, a = -180 ° ........................ 70

Convergence histories for cascade of Tenth Standard Configuration air-

foils undergoing an unsteady plunging motion: k = 2.573, a = -180 ° . 71

Imaginary part of unsteady pitching moment for cascade of Tenth Stan-

dard Configuration airfoils undergoing an unsteady pitching motion: k

= 0:5 ...................... 72

Steady coefficient of pressure distribution, First Standard Configura-

tion: M-oo = 0.17, G = 0.75, O-oo = 55 °, D-oo = 66 ° ......... 73

(top) Real unsteady pressure distribution for cascade of First Stan-

dard Configuration airfoils undergoing an unsteady pitching motion;

(bottom) Imaginary unsteady pressure distribution for cascade of First

Standard Configuration airfoils undergoing an unsteady pitching mo-

tion: (case 8) k = 0.244, o" = -90 ° .................... 74

6.1 Top to bottom: (a) Trajectory of shock in a channel or on airfoil sur-

face; (b) Mean and unsteady flow distribution; (c) Perturbation flow

showing shock impulse; (d) same as (c) with impulse modelled by shock

capturing. Note the area under the impulse is the same in (c) and (d). 82

6.2 Steady transonic flow in a diverging channel ............... 87

6.3 Top: Perturbation pressure in a diverging channel due to a steady

perturbation in back pressure. Bottom: Enhancement of the shock

impulse region ................................ 89



LIST OF FIGURES 5

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

Top: Unsteady pressure in a diverging channel due to an unsteady

perturbation in back pressure, w = 1.0. Bottom: Enhancement of the

shock impulse region ............................. 90

Coefficient of pressure distribution, Tenth Standard Configuration: M_oo =

0.8, G - 1.0, O = 45 °, fl_oo - 58 ° ..................... 93

Real and imaginary unsteady surface pressure, Tenth Standard Con-

figuration, plunging: w = 1.287, _r = -90 ° ................ 94

Convergence histories of unsteady solution for different methods. All

cases use multigrid acceleration ....................... 95

Steady pressure contours, modified circular arc airfoil: M-oo = 1.2, G =

1.0, O = 55 °, ft_o¢ = 60 ° .......................... 96

Isentropic Mach number distribution, modified circular arc airfoil: M-co -

1.2, G = 1.0, O = 55 °, _-_o = 60° ..................... 97

Imaginary part of moment coefficient for a range of interblade phase

angles, modified circular arc airfoil, pitching about midchord, w = 0.5. 98

Real and imaginary unsteady surface pressure, modified circular arc

airfoil, pitching about midchord: w = 0.5, cr = 120 ° ........... 99



Chapter 1

Introduction

In order to understand unsteady aerodynamic phenomena in turbomachinery, aeroe-

lasticians require accurate and efficient models of the unsteady flow fields that result

from blade motion and incident gusts. This is a formidable task since the flow is

time-dependent, three-dimensional, compressible, and in general viscous. The objec-

tive of this research is to develop a computational algorithm, based on the linearized

Euler equations, that will accurately and efficiently predict unsteady subsonic and

transonic flows in cascades. Specifically, the goal of the present research is to develop

an algorithm which requires about the same amount of computer time to solve a sin-

gle unsteady flow problem as is required to solve the equivalent steady flow problem,

and which computes the unsteady flow field about as accurately as its steady flow

counterpart.

In the present study, particular emphasis is placed on the modeling of the resultant

forces associated with unsteady shock motions encountered in transonic flows. It is

important to model accurately these shock loads since the unsteady blade loading

associated with the moving shock often accounts for about half of the total unsteady

load.

Another concern is the effective handling of the far-field computational bound-

aries. Because the computational domain must be finite in extent, so-called far-field

boundary conditions must be imposed on the far-field boundaries. If not properly for-

mulated, however, these boundary conditions can reflect unsteady disturbances back

into the computational domain, corrupting the solution. This can lead to incorrect

predictions of the unsteady surface loading and hence incorrect conclusions as to the

Stability or response of the airfoil. In this report, a new exact far-field boundary con-

dition formulation is presented. The method has the advantage that it is generic, and

can be applied to a wide range of flow models (potential equation, Euler equations,

Navier-Stokes equations) and can be extended to fully three dimensional analyses.

1.1 Historical Development

The techniques which have been developed over the last 30 years to analyze unsteady

flows in cascades can be classified into ,one of the following categories: analytical and

6



1.1. HISTORICAL DEVELOPMENT 7

semi-analytical methods or field methods. Using analytical approaches, the governing

equations are solved exactly or through the use of point singularities. The complexity

of the analytical problem requires simplifying assumptions which make the problem

tractable. These assumptions, e.g., thin airfoils, no camber and light loading, severely

limit the applicability of these methods since these assumptions are violated by most

fan, compressor and turbine blades.
One of the first classical analyses of unsteady flows in turbomachinery was de-

veloped by Whitehead [52], who considered two-dimensional, incompressible flow

through a cascade of flat plate airfoils. Since the steady flow was assumed to be

uniform, there could be no accounting for the steady loading on the blade. White-

head later extended his model to included the effects of steady loading and showed

that steady loading plays an important role in bending flutter [53]. Later, Atassi

and Akai [3] developed an inviscid incompressible flow model which included the ef-

fects of camber, thickness, and steady blade loading. With this model they studied

steady and unsteady incompressible flows through a cascade of thick, cambered air-

foils. Their results, like Whitehead's, showed the importance of steady blade loading

on the unsteady flow in the cascade.

The effects of compressibility were next investigated by Whitehead [54] and Smith

[43]. With compressibility, the added complexity of acoustic modes and acoustic
resonance is introduced. Smith found that for unloaded cascades, the theory was

successful in predicting the cut-off behavior as well as the amplitude of the acoustic

waves. For steadily loaded cascades, however, the amplitudes of the acoustic waves

were not predicted well.

Several researchers [1,20,47] have investigated cascades of vibrating flat plates in

supersonic flow which is axially subsonic. The results obtained using these models

indicate that bending flutter will not occur at the reduced frequencies and Mach

numbers at which real compressors actually exhibit bending flutter. Bendiksen [7]

later used a perturbation analysis to include effects due to steady loading, thickness,

camber and shock motion and demonstrated the important role of shock motion in

flutter prediction.

Although the assumptions invoked by these analytical and semi-analytical meth-

ods limit analyses to low cambered and lightly loaded airfoils, significant insight was

gained through the use of these elegant, albeit simplified, models. Specifically, to

model accurately the flow in a cascade, the effects of steady blade loading are critical.

This means an effective model must contain the effects of camber and thickness, as

well as any discontinuities the flow field may permit, i.e. shocks. The evolution of

computer capabilities, coupled with the cost and difficulty in experimentally evaluat-

ing the unsteady aerodynamic performance of turbomachinery blade rows, has pro-

vided an impetus for the development of increasingly more sophisticated field models

which capture more of the underlying physics of the problem such as arbitrary blade

geometries and complicated shock structures. These models, classified as field meth-

ods, can be further separated into two groups, time marching and linearized methods

(sometimes called time linearized).
The most direct approach taken has been to develop time-accurate time-marching

Euler [14,18,28,31] and Navier-Stokes [5,17,40,41] solvers capable of analyzing the
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unsteady flows found in turbomachinery. This approach has merit in that the nu-

merical implementation is relatively straightforward and complicated two- and three-

dimensional nonlinear flows can be analyzed. There is a cost associated with this

approach, however. Because of the large number of grid points and the requirement

that the analyses be both accurate and stable, the maximum allowable time step used

in the calculations must be small making these calculations prohibitively expensive

for routine design use.

In a linearized analysis, the flow is assumed to be composed of a nonlinear mean

(or steady) flow plus an unsteady, harmonically varying small perturbation flow.

Since the resulting unsteady flow field can be described by linear, variable coefficient,

differential equations in which the explicit time dependence has been removed (that

is the equations are solved in the frequency domain), the solution of the equations

requires significantly less computational effort than that of the full nonlinear unsteady

flow equations. Verdon et al. [47,48,49] and Whitehead and Grant [56] pioneered the

development of linearized potential solvers as applied to the subsonic blade motion

problem (the flutter or aerodynamic damping problem): Later, Hall and Verdon [26]

and Caruthers and Dalton [11] extended this technique to handle incident vortical and

entropic gusts Using the flow decomposition technique of Atassi and Grzedzinski [4].

However, because of the inherent assumption that the steady flow be irrotational and

isentropic, potential analyses are applicable only in the subsonic and low transonic

flow regimes. In addition, three-dimensional flows with inlet swirl, typical of those

found in turbomachinery applications, cannot be modeled using potential techniques.

To overcome some of the limitations of the potential methods, investigators have

begun to develop linearized Euler techniques. Ni and Sisto [39] proposed a technique

whereby the linearized harmonic Euler equations were solved using traditional time-

marching techniques by introducing a pseudo-time dependence. In this work, the

flow was assumed to be isentropic and the results were limited to flat plate cascades.

Hall and Crawley [24] later developed a direct method of solving the linearized Euler

equations for realistic compressor designs, as well as for transonic channel flows. For

transonic flows, they used shock fitting to model the motion of the shock. Although

shock fitting does provide sharp, clearly defined shocks and shock motions, it is cum-

bersome and complex and therefore less desirable than shock capturing. In a recent

paper, Lindquist and Giles [35] outlined the conditions under which shock capturing

correctly models shock motion in a linearized Euler analysis. The linearized Euler

technique has shown the potential for dramatically reducing the computational cost

required to solve unsteady subsonic [22,25] and transonic [23] flow problems in both

two and three dimensions while still modeling the dominant physics of the unsteady

flow problem. However, the method is still somewhat immature, and a number of

modeling and computational issues require further research to make the method a

viable technique.



1.2. OVERVIEW OF STRATEGY EMPLOYED 9

1.2 Overview of Strategy Employed

A linear cascade is an array of blades similar to a blade row in a turbomachine,

except that it is usually two-dimensional, as shown by Fig. 1.1. Calculations from

two-dimensional cascades can be directly useful for rotating machines, provided that

the hub- to-tip ratio is nearly unity, though corrections are often made for radial

effects. The variables which define the cascade geometry are the blade shape, solidity

(the ratio of chord-to-gap) and stagger angle (see Fig. 1.1). In the absence of unsteady

excitation, the blades are identical in shape, equally spaced and their chord lines are

oriented at the same stagger angle relative to the axial flow direction.

Figure 1.1: Geometry of a rectilinear cascade

Although viscous forces produce the wakes which are a prime source of forced

response in turbomachinery, inviscid effects dominate the resulting wake interaction

with a downstream blade row, subject to the limiting assumptions that the flow re-

mains attached and that the boundary layers are thin. In the present analysis, there-

fore, the fluid flow through a single cascade of airfoils is modeled as two-dimensional,

adiabatic, and inviscid. Subject to these constraints, the governing equations of the

fluid motion are the two-dimensional Euler equations. These equations are nonlinear

and unsteady and thus generally difficult to solve efficiently.

To simplify the solution process, the present method makes use of the fact that

for small disturbances, such as are typically found in turbomachine applications, the

unsteady perturbation flow is small compared with the mean flow and can reasonably

be linearized about the mean flow. The resulting equations are linear, variable coef-

ficient, differential equations. By introducing a pseudo time dependence into these

equations, the equations may be solved by time marching them to steady state. Since
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the equations need not be marched time accurately, acceleration techniques such as

multiple- grid acceleration and local time stepping may be employed. As previously

indicated, along with efficiency, accuracy of the solution is important.

The present analysis uses two procedures developed to improve the accuracy of

the method. First is the implementation of a continuously deforming grid. While

several nonlinear time-marching Euler codes have been developed that use moving

or deforming computational grids [6,8,42,46], most previous linearized potential and

Euler solvers have used computational grids fixed in space for solution of the lin-

earized equations [24,48,49,50]. To calculate the flutter stability of an airfoil, one

assumes the blades vibrate with a fixed amplitude, frequency, and interblade phase

angle. The linearized equations are then solved to determine the unsteady pressure

on the airfoil surface. However, since the blades move through the stationary grid,

the boundary conditions that apply at the instantaneous location of the airfoil must

be extrapolated back to the mean location of the airfoil where the boundary condi-

tions are actually applied. Similarly, once the unsteady flow solution has been found

on the fixed grid, terms involving the mean flow pressure gradient must be added to

the unsteady pressure at the mean blade location to obtain the unsteady pressure at

the instantaneous position of the blade. These gradient terms are difficult to evalu-

ate accurately in practice, especially near the leading and trailing edges of fan and

compressor blades. The resulting errors introduced at the airfoil boundary make the

computed solution of the unsteady aerodynamic loads on moving airfoils inaccurate

and sensitive to small errors in the computed steady flow field.

To overcome some of the difficulties associated with fixed grid potential calcu-

lations, Whitehead and Grant [56] introduced a linearized potential transformation

that can be viewed as a rigid-body motion of the grid. Because the grid in effect

moves with the airfoil, the scheme does not require extrapolation terms at the airfoil

boundaries. While this approach allows rigid-body motions of airfoils to be analyzed,

flexible mode shapes, which are common in turbomachinery aeroelasticity, cannot

be analyzed. Recently, Hall [21] developed a linearized potential analysis that uses a

deforming grid and is capable of analyzing both rigid-body and elastic airfoil motions.

The present research presents a deforming grid linearized Euler solver that is

suitable for the aerodynamic damping calculation of turbomachinery blades. It is

demonstrated that the use of a deforming grid results in significantly more accurate

predictions of the unsteady flow field and aerodynamic loads. Because the grid de-

forms elastically, the method can analyze both rigid-body and flexible blade motions.

Furthermore, as implemented in the present method, the additional computational

analysis required to use the deforming grid need only be calculated once before the

start of the basic numerical integration scheme, hence the moving grid adds virtually

no computational expense.

The second gain in accuracy results from the implementation of numerically exact

nonreflecting far-field boundary conditions. Accurate unsteady flow computations

demand nonreflecting boundaries to prevent any spurious reflections from corrupting

the solution. Previous investigators [19,24,49,56] have derived the exact analytical

behavior of linearized potential and Euler equations in the far-field and then matched

these results to the numerical solutions computed in the near field. The present work
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presents an alternative approach, whereby, the numerically exact, far-field behavior

is found from an eigenanalysis of the discretized equations. The resulting eigenmodes

are then used to construct the numerically exact, nonreflecting boundary conditions.

1.3 Outline

In Chapter 2, the governing nonlinear Euler equations are presented. The small

disturbance assumption is introduced resulting in the linearized Euler equations which

model the small disturbance unsteady flow field. Also introduced is a deforming

computational grid which conforms to the motion of the vibrating airfoils. Finally,

the analytical problem is closed with the introduction of the near-field boundary

conditions.

In Chapter 3, the basic (i.e., subsonic) numerical integration scheme is developed.

The properties of the scheme, including accuracy, consistency and stability, are ex-

amined using a model equation. Also discussed are grid generation techniques, and

acceleration techniques such as multiple grid acceleration and local time stepping.

In Chapter 4, a new numerically exact far-field boundary condition formulation

is presented. To put this new technique into perspective, more traditional analytical

boundary condition treatments are first reviewed. The new exact formulation, which

makes use of the eigenmodes of the discretized small disturbance equations, is then

presented.

Chapter 5 presents numerical predictions of unsteady flows computed using the

present method for several cascade configurations operating in the subsonic regime.

Solutions obtained are compared to several approaches including analytical and semi-

analytical methods, computational methods, and experimental data. Both the accu-

racy and efficiency of the present method are examined.

Chapter 6 introduces the theory and resulting modifications to the previously

developed algorithm needed to model transonic flows using shock capturing. The

idea of a conservative linearization is developed and the effects of nonconservation on

the unsteady solution are explored. Test cases are then presented which depend on

these modifications and the results are compared to nonlinear computational data.

Finally, Chapter 7 concludes the report with observations about the usefulness

of the present method as a design tool. In addition, conclusions from the present

analysis and recommendations for future work in this area are presented.



Chapter 2

Governing Equations

This chapter begins with the development of the integral form of the Euler equations

valid for a deforming control volume. Next, the Euler equations are Iinearized to

obtain a description of the small disturbance unsteady flows in cascades. First, a

deforming computational grid which conforms to the motion of vibrating airfoils is

defined. Then the Euler equations are linearized in a frame of reference attached to

the moving grid. Subsequently, the preceding results are coupled together to obtain

the linearized Euler equations valid on a continuously deforming grid. Finally, the

analytic problem is completed by specifying appropriate near-field boundary condi-

tions.

2.1 The Nonlinear Euler Equations

The general technique for obtaining the equations governing fluid motion is to consider

a small, deformable control volume (Fig. 2.1) through which the fluid moves, and to

require that mass, momentum and energy be conserved. This produces four equations

which, when combined with an equation of state, provide sufficient information for

the determination of the four conservation variables: p, pu, pv, e, where p is the

density, e is the internal energy, and u and v are the z- and y-components of the fluid

velocity.

The present analysis makes the following assumptions. The flow is inviscid, im-

plying that shear stresses are absent and hence the tangential velocity of the fluid at

a solid surface boundary does not necessarily vanish as it must for a viscous fluid. A

consequence of this simplification is that only surface forces which act perpendicular

to the control surface (i.e., pressure) are present. In addition, it is assumed that there

are no body forces present. Hence gravitational, electrostatic, and magnetic effects

are neglected. Finally, the flow is assumed to be adiabatic and the fluid is assumed

to be thermally perfect. The consequence of the first assumption is that no heat

is transferred to or from the surroundings. The second assumption implies the gas

obeys the ideal gas law. With these simplifying assumptions, one can construct the

governing equations of the fluid motion for a deforming control volume.

12
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Controt

Votur_e, CV /\

J

Controt SurFace, CS

(F,g)

n

Figure 2.1: Typical control volume

2.1.1 Continuity Equation

The conservation of mass requires that the time rate of change of mass within the

control volume be equal to the mass flux crossing the control surface. In integral

form,
d

where f and g correspond to the displacement of the control volume in the x- and

y-directions.

2.1.2 Momentum Equation

Newton's second law of motion states that the time rate of change of linear momentum

of a given set of fluid particles is equal to the sum of the forces acting on the fluid.

Using Reynolds' transport equation, the conservation of linear momentum is given

by

d

•-_//pu dxdy+ _s ( pu2 +P-pu_)dy-J_s (puv-pu_._)dx=O (2.2)

d

_ /fevpvdzdy + _ (puv- pv_t)dY- _s (Pv2 + p- pv_) dz =O

where p is the static pressure.

(2.3)
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2.1.3 Energy Equation

The first law of thermodynamics states (neglecting potential energy) that the time

rate of change of internal energy plus kinetic energy of a system is equal to the rate of

heat transfer into the system less the rate of work done by the system. Coupled with

the assumption that the fluid is an ideal gas, and again using Reynolds' transport

equation, the conservation of energy is given by

d

-._ //_,,edxdy+ fes (puho-e_t)dY- _, (pvho-e_t)dx=O (2.4)

where ho is the total enthalpy given by

1
+P "7 P+ (,,:+v :) (2.5)h o -

2.1.4 Summary

Using the results we have just obtained, we can now state in vector and conservation

form the governing equations of the fluid. For a Cartesian coordinate system the

Euler equations can be written as

d _ (2.6)

where U is the vector of conservation variables and F and G represent the flux vectors

described below.

p ] pu pv

pu ] F = PU_ + p G = puv (2.7)
U - pv ' pttv ' pv 2 + 19

e puho pvho

It can be shown that the Euler equations in differential form are given by

0U OF 0G (2.8)
0---b-

2.2 Linearization Of The Euler Equations

Having developed the governing equations, in this section the nonlinear unsteady

flow is decomposed into a nonlinear mean (steady) flow and a linear, harmonically

varying perturbation flow. As previously stated, this analysis is performed on a con-

tinuously deforming grid to improve the accuracy of the method. When the formal

development is presented, the ensuing linearized Euler equations will contain inhomo-

geneous terms which arise from the grid deformation. Hence, the system of equations
to be discretized are linear, variable coefficient, inhomogeneous partial differential

equations.
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2.2.1 Computational Coordinate System

Most previous linearized analyses have used computational grids which are fixed in

space. For flutter calculations this implies that the cascade of airfoils vibrate through

the stationary grid. To apply the appropriate upwash boundary condition at the air-

foil surface, an extrapolation from the mean position of the airfoil to the instantaneous

airfoil position must be performed. This procedure produces additional extrapolation

terms in the airfoil upwash boundary condition; these extrapolation terms are quite

large and difficult to evaluate accurately, especially in the regions near the leading

and trailing edges. In this investigation, we avoid this difficulty by using a deformable

grid which conforms to the motion of the airfoils. Since the airfoil motion is restricted

to small amplitude, harmonic motion, the grid motion is similarly constrained. When

implemented, no troublesome extrapolation terms are required in the application of

the upwash boundary condition.

The physical coordinates (x, y, t) are related to the computational coordinates (_,

ri, r) by the following transformation.

z(_,y,r) = _ + f(_,q)e j_ (2.9)

y(_,rl, r) = Tl+g(_,y)e_ _ (2.10)

t(_,7/,r) = r (2.11)

The functions f and g are chosen so that the motion of the grid on the boundaries

conforms to the motion of the airfoils and are in general complex to include phase

differences between adjacent/_irfoils. In the interior of the computational domain,

it is desirable that f and g be continuous and smooth functions to minimize the

truncation error of the numerical integration procedure. Thus, a natural choice is to

let the values of f and g be determined by the solution of Laplace's equation with

appropriate boundary conditions.

A typical example of unsteady grid motion can be seen in Fig. 2.2. These figures

depict the computational and physical grids for the Tenth Standard Configuration

airfoils undergoing a pitching motion with an interblade phase angle, _r, of 90 °. In

the computational coordinate system, the airfoils and the grid appear to be stationary;

in the physical domain, the airfoils and grid continuously deform.

2.2.2 Flow Decomposition

Now that the grid motion has been defined, a similar expansion of the flow variables

using the same assumption of small harmonic perturbations is proposed, i.e.,

l](_, rl, r) = U(_, _/) + u'(_, TI)ej_'_ (2.12)

Here, U is the vector of conservation variables representing the zeroth order or mean

flow field, and u' is the vector of small perturbation harmonic amplitudes of the

conservation variables representing the first order or unsteady flow field. It is now

apparent that there are two sources on unsteadiness. These are: the unsteadiness

associated with the small perturbation of conservation variables and the unsteadiness
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_Jl'A[l,,_r

Figure 2.2: Left:Unsteady grid in computational coordinate system (_, 7/). Right:

Unsteady grid in physical coordinate system (z, y) for the case of a cascade of airfoils

pitching about their midchords with an interblade phase angle, o-, of 90 °. Flow

calculations are performed using a single blade passage. Multiple passages are shown

for clarity.
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associated with the motion of the steady flow as seen by an observer attached to a

frame of reference in the deforming computational grid.

In a similar manner the flux vectors and the individual components of the state

vector can be expanded in a perturbation series as follows:

0F , .

F(_,r/,T) -- F(-_ +_--_ue _`_* (2.13)

0G ,#_ (2.14)
d(¢,., _) = _ (v) + _--_u

_(_,_,_) = _(_,,) + p'(_,_)ejw_
_a(_,,,_) = _(_,_) + p_'(_,,)eJ_.
_(_,,,_) = v(_,_) + p,'(_,,)_s_
_(_,,,_) = _(_,_)+_'(_,,)_s_.

where 0F/0U and ag/av are the Jacobians, which can be written as

0 1 0 0

m

OF

OU

:r-_-G_+ -_V _ -('r- 3)-U -(_, - 1)V "r- 1

-U--V V U o

-g(_ v_ - ho) ho- (7 - 1)-U_ -(7 - 1)UV -?U

and

m

0G

0U

0 0 1 0

-u--V V -U o

z:_V_+ :r_-_-__ -('r - 1)-U -('r - 3)V .y- 1

V (_v_ - _o) -('r- 1)uv ho- (._- 1)V_ W

where V_ = U_ + V _.

(2.15)

(2.16)

(2.17)

2.3 Linearized Euler Equations In Computational

Domain

Recall (Eq. 2.6) that the vector form of the governing equations for a deforming

control volume is given by

d
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Substitution of the perturbation assumptions into the conservation equations de-

scribed by Eq. 2.6 yields

d-7 (V + u'_J_) (d_+ didst.)(d_ + dg_J_)

/. aF ,ej_. _jwfUe_ , dgeJ_. )+ +b-_u (d_+

(o )/_, OG u'eJ_" (d_ +- + _ - jwgUeJ _ dfe TM) = 0 (2.18)

Grouping terms of zeroth and first order results in the mean flow and small distur-

bance equations respectively. The mean flow Euler equations represented in integral

form are

0
Equation 2.19 is the familiar integral representation of the two-dimensional Euler

equations.

Similarly, the resultant linearized Euler equations in integral form are

+ _. dg+ -g-_u'd,7- j_fVd,7

- df + -_u'd_ - jwgVd_ = 0
(2.20)

Written in this manner, each first order term from Eq. 2.18 has an obvious corre-

sponding term in Eq. 2.20. For example, the first row of Eq. 2.20 represents the first

order perturbation of the first row of Eq. 2.18. In the first row of Eq. 2.20, the first

term represents the unsteadiness in the first term of Eq. 2.18 due to the perturbation

u' while the second and third terms in Eq. 2.20 represent the unsteadiness due to the

grid motion. Rewriting Eq. 2.20 so that the homogeneous terms and inhomogeneous

terms are separated gives

jw [[ u, d_drl + _, [ Off , O-G , "_

-j_ ff_, U (d_dg+ dfd_)

(2.21)
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where the homogeneous terms (homogeneous in u') appear on the left and the inho-

mogeneous terms appear on the right.

It is apparent that the mean flow as described by Eq. 2.19 is independent of the

unsteady perturbation flow. The perturbation flow, on the other hand, depends upon

the steady flow in two ways. Recall that the linearized Euler equations are linear,

inhomogeneous, variable coefficient differential equations. The variable coefficients

(essentially the Jacobians) are functions of the mean flow field. Second, the inhomo-

geneous portion of Eq. 2.21 (the right-hand side) is a function of only the steady flow

field and the prescribed grid motion (for the gust response problem, the inhomoge-

neous term is identically zero since the computational grid is nondeforming). Hence,

the right hand side of Eq. 2.21 need only be calculated once at the beginning of the

iteration procedure. For this reason, the use of a deforming grid adds very little to the

total computational time of the algorithm. In addition, the Jacobians need only be

calculated once and then can be stored for later use significantly reducing the number

of required floating point operations per iteration.

For numerical integration of Eq. 2.21, it is convenient to make the mean flow

variables, U, and the perturbation variables, u', artificially time dependent. As

suggested by Ni and Sisto [30], let

Off, 7, = U(¢,7, + u'(¢, 7, (2.22)

Substitution of this assumption into the nonlinear Euler equations, Eq. 2.6, and

again collecting terms of equal order gives

"_r U d_dr I + Fdr I - -Gd¢ = 0
(2.23)

and

d

__drff u, d_drl + jw f/ u, d_drl + / ['OF ,_-_u drl - _u d_)cg-G, _ =

/f_.'U (d_dg + dr&7)+ jw _, (f'Udl7 - g'Ud_) - _, ('Fdg - -Gdf) (2.24)jwI

Now both the nonlinear mean flow equations and the linearized Euler equations con-

tain explicit time derivative terms making the equations hyperbolic in time. This

allows solution of the equations using conventional time-marching algorithms. The

equations are marched in time until the conservation variables reach their steady state

values. Hence, the time derivative terms in Eqs. 2.23 and 2.24 are driven to zero and

the original steady nonlinear and linearized unsteady Euler equations are recovered.

Furthermore, since only the steady state values of the mean and perturbation flow

conservation variables are desired, there is no need to time march the equations time

accurately; multiple-grid and local time stepping acceleration techniques are used

greatly reducing the computational time required to solve an unsteady flow problem.

To obtain the corresponding differential form of the mean and linearized conserva-

tion statements ( 2.23 and 2.24), we must relate the spatial and temporal derivatives
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in the physical coordinate system to those in the computational coordinate system.

This relationship is given by

= _ _ _ _ =cJJ _. (2.25)

where [J] is the Jacobian matrix associated with the coordinate transformation. A

similar transformation matrix can be obtained for the inverse problem, and will be

denoted [j]-i as shown below

/°)I°°°l(°)_ = [j]-x _ (2.26)

_ ot

Substituting the small motion assumption of Eqs. 2.9 through 2.11 into the [j]-I

matrix and inverting, the [J] matrix is found to be given by

1-h -g¢ 0 ]
[J] = -f_ t - g, 0 (2.27)

-f_ -g_, 1

where only zeroth and first order terms have been retained.

The derivatives in the physical coordinates can now be represented in terms of

the grid coordinates as follows:

0 0 (_0 o) (2.29)

0_0 (s,_ +.._) (2.3o)Ot Or

Thus, in vector form, the differential representation of the linearized Euler equations

in the computational domain is given by

00_ 00_
jwu' + O_ ou"_u' + 071 0 v#u'w =

{of 0 0_0) 0/0 0_o) g (2.3_)
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Figure 2.3: Classification of boundary types in computational domain

2.4 Near-Field Boundary Conditions

To complete the specification of the unsteady flow problem, boundary conditions must

be specified around the entire computational domain as shown in Fig. 2.3. There are

essentially three types of unsteady boundary conditions. The solid surface, or no

through flow condition dictates that there be no flux of mass through solid surfaces.

Periodic boundary conditions are applied upstream and downstream of the cascade

to reduce the computational domain to a single blade passage. Finally, far-field

boundary conditions are necessary to prevent spurious reflections of outgoing waves

at the upstream and downstream computational boundaries (the development of the

far-field boundary conditions is deferred until Chapter 4).

2.4.1 Solid Surface

The solid surface boundary condition is necessary to ensure that no flow passes

through the surface of the airfoil. The development of this boundary condition will

begin with the full unsteady nonlinear representation of this statement which is given

by
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AirFolt's per±urbed loca±ion

t's mean tote±ion

R(s)

Figure 2.4: Illustration of position vectors for flow tangency boundary condition

Oft(,,r)
V(_, r/, r) • fi(s, r) - Or. • fi(s,r) (2.32)

Figure 2.4 illustrates the location of the airfoil surface at its mean and perturbed

location. T&(s, r) describes the location of the reference alrfoil's surface at time r,

where s is the distance along the airfoil surface.

In a manner analogous to that developed in the section pertaining to flow decom-

position, the unit normal vector and the airfoil's position vector can be expanded in

perturbation series:

R(s, r) = R(s) + r'(s)eJ"" (2.33)

fi(s, r) = _(s) + n'(s)e j''_" (2.34)

_'(s, r) = V(s) + v'(s)eJ"" (2.35)

Substitution of Eqs. 2.33 through 2.35 into Eq. 2.32 yields

O (-R + r'). (_ + n')(v +v,). +n') - 0r (2.36)

where

r'= (f,g) (2.37)
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Recall that f and g are the functions that represent the first order unsteady grid

motion. Collecting terms of zeroth and first order describes the steady and unsteady

flow tangency conditions respectively,

V._ = 0 (2.38)

v' . _ = -V. n' + jw(f,g) .'ff (2.39)

Equation 2.38 is clearly a statement restricting the steady flow to be tangent to

the blade surface. The unsteady counterpart to the flow tangency condition, Eq. 2.39,

states that the normal perturbation flow velocity must be equal to the upwash on the

surface of the airfoil attributed to its unsteady motion. The first term on the right

side of Eq. 2.39 is the upwash associated with a rotation of the blade surface, whereas

the second term is the upwash associated with a translation of the blade surface.

The benefit of using a deforming grid is now clearly evident. There are no terms in

Eq. 2.39 that represent extrapolations of the blade's position to a mean location in

order to apply the unsteady boundary condition. Finally, it should be noted that the

upwash is only a function of the steady flow and the specified grid motion. Both of

these quantities are known prior to the iteration procedure.

2.4.2 Periodicity

Because the unsteady flow is governed by linear equations, the response of the

cascade to blade motion or a gust may be found by decomposing the disturbance into

a sum of travelling wave modes, each having a different frequency, w, and interblade

phase angle, a. By superposition, the total response of the cascade is equivalent to

the sum of the response to each of the individual modes. Therefore, without any

loss in generality, only one travelling wave mode need be considered at a time. The

unsteady periodicity condition upstream and downstream of the cascade is then

+ a) = (2.40)

where G is the blade-to-blade gap (see Fig. 2.5). This periodicity condition allows

the computational domain to be reduced to a single blade passage which significantly

reduces memory requirements and computational time.

2.5 Summary

In this chapter, the linearized Euler equations were developed. Included in this anal-

ysis was the effect of a deforming computational grid. Near-field boundary conditions

were presented to complete the specification of the unsteady aerodynamic model.

In the next chapter, a numerical integration scheme for solving the linearized Euler

equations will be presented.
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Figure 2.5: Illustration of the periodic boundary condition



Chapter 3

Basic Numerical Integration Scheme

Over the last two decades numerous computational methods have been developed

to solve the steady Euler equations (e.g., [13,37,39]). One goal of the present re-

search, is to adapt proven steady flow solvers to solve the unsteady linearized Euler

equations. An advantage of this approach is the same algorithm can be used in the

solution of both the steady, nonlinear Euler equations and the linearized, unsteady

Euler equations. Additionally, the Lax-Wendroff algorithm method selected has been

proven to be an efficient and effecti'_e way of solving the nonlinear Euler equations

and is believed to be equally effective when applied to the linearized Euler equations.

With this in mind, the main goal of this chapter is to present the basic numerical

integration method used in the present analysis. In addition, issues of grid generation

and numerical properties of the integration scheme such as stability, consistency, and

accuracy are investigated.

3.1 Unsteady Grid Generation

The primary focus of the present work is the development of a numerical tool aeroelas-
ticians can use to calculate unsteady flows in turbomachinery applications. Toward

that end, the steady Euler and linearized Euler equations will be discretized and

solved using a finite volume technique. Before proceeding, however, a computational

mesh must be constructed to specify the discrete locations where the solution is to be

found. It is well known that the quality of the grid used can significantly affect the re-

sults. Therefore, while grid generation is not the primary focus of this research, a brief

development of the grid generation techniques used is presented for completeness.

The problem of grid generation has been an area of active research for many years

[2,44]. Generally, the greater the resolution the more accurate the results. On the

other hand, the greater the resolution, the more computational time and resources are

required to solve the problem. This introduces one of the fundamental problems of

grid generation: how to balance the resolution required to obtain a reasonable solution

with an acceptable amount of computational resources. Another desire is that the

grid lines be nearly orthogonal everywhere as most finite difference and finite volume

schemes produce large truncation errors when the grid is highly skewed. Although this

25
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may be possible, it comes at the expense of added complexity in the grid generation

algorithm. In addition, some skewedness is permissible without significantly affecting

the solution. Finally, adjacent cells should be approximately the same size, since

rapid changes in the size of the computational cell can introduce error as well as lead

to stability problems. These factors and others are taken into consideration when

ascertaining the quality of the mesh. It is for these reasons that there is an art

associated with grid generation that is outside the scope of the present research.

Since the unsteady grid motion is comprised of a steady (mean) grid plus a har-

monically varying small perturbation, it is necessary to compute first a steady grid.

about which the unsteady grid motion can be linearized. In the generation of the

steady grid, a modified version of an elliptic mesh generator developed by Thompson

[44] is used. The principle behind this grid generation technique is to prescribe the

boundary points in the physical domain and then map the specified computational

grid into the irregular physical domain by solving an elliptic PDE with the appropriate

boundary conditions.
With the steady grid generated it is now necessary to generate the unsteady grid

motion. Recall that the position (x, y) of a grid point is given by

x--_ + f(_, rl)eJ'"

y = ,l + (3.1)

For cases involving blade motion, the complex amplitude of the grid motion (f, g)

must be specified at every grid point in the computational domain. Since the mode

shape of the blade vibration is known, the quantities f and g are prescribed on

the solid surface boundaries to match the prescribed airfoil motion. Upstream and

downstream of the airfoil, the values of f and g on the boundary are prescribed to

"smoothly" vanish as the far field is approached. The requirement that the motion

of the grid vanish in the far field is made to simplify the far-field boundary condition

development in Section 4.3. Additionally, the grid motion must satisfy a complex

periodicity condition similar to that prescribed on the unsteady flow variables.
With the values of f and g now prescribed around the entire computational do-

main, the problem now is to determine the motion in the interior. In principle the

distribution could be arbitrary. However, a smooth grid distribution reduces trun-

cation errors in the unsteady flow computation. Therefore, in the present work, the

motion of the grid on the interior is described by Laplace's equation so that

V2f = 0

V2g =0 (3.2)

subject to the Dirichlet boundary conditions specified above. A finite element scheme

is used to discretize the equations on the steady grid. The equations are then solved

directly using LU decomposition. Because the motion of the grid is harmonic, the

solution of the grid motion need only be determined once before the iterative solution

procedure begins. Figure 2.2 shows the computational grid (steady) and physical grid

(unsteady deforming) for a typical unsteady flow calculation.
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3.2 Basic Lax-Wendroff Integration Scheme (One-

Dimensional Model)

When deciding which integration scheme to use in the present research, the following

factors were considered. First, it is desirable to take advantage of previous experience

so as not to duplicate effort. Second, the same algorithm should be used in both the

steady and unsteady codes. Third, the scheme should be computationally efficient

making use of modern convergence acceleration techniques. Hence, a logical choice

for the present research was an adaptation of the Ni scheme [13,37] which is itself a

variant of the familiar Lax-Wen&off scheme. The Ni scheme, as traditionally applied

to the steady nonlinear Euler equations, is marched in time until a converged solution

is obtained. However, since the linearized Euler equations are cast in the frequency

domain, they are not explicitly dependant on time. Hence, as suggested by Ni and

Sisto, a pseudo time term must be introduced as discussed in section 2.3. The resulting

linearized Euler equations in differential form are

3u' aOF , O0_ ,
0_" + jwu' + _--_u + = b (3.3)o_ _--ffu

where b is the right side of Eq. 2.31. Equation 3.3 resembles Eq. 2.31 with the

exception that an additional time dependent term now appears on the left side of the

equation. This pseudo-time dependent term is driven to zero by time marching the

modified linearized Euler equation to steady state, thereby recovering the solution to

the original linearized Euler equations (Eq. 2.31).
Ni's Lax-Wen&off scheme can easily be applied to the linearized Euler equations

with some minor modifications. To simplify the description of the method, the inte-

gration scheme will be presented using the following one-dimensional model equation.

0,5 0P(_) (3.4)
0"-_+ Oz -0

If Eq. 3.4 is linearized, the following expression is obtained.

j_.,+_ \_ ) =0

Introducing the pseudo time dependence results in the following expression for the

perturbation equation,

0_, o (aT ,_ (3.6)
0__;

This new model equation resembles the linearized Euler equations as written in Eq. 3.4

and it is for this equation that a variation of Ni's scheme will be presented. The

variation from the original development arises from the introduction of the jwu' term
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Figure 3.1: Typical computational cell for one-dimensional Ni scheme

which is a result of the linearization process. (In the following development the primes

will be omitted for clarity)

To begin, the solution u is expanded in a Taylor series, resulting in

cgu At + \ Ot 2]i T +"" (3.7)

= u_'+ 5u_ (3.S)

where the superscript n refers to the computational time level and the subscript i

refers to the grid location. In Eq. 3.8 is the correction in the solution at the i th node

from one time level to the next. Rewriting Eq. 3.6 gives

o-_=- __+_ \o_ /j

Differentiating Eq. 3.9 with respect to time and applying the chain rule yields

ot----¢= - J_N + _ \_g (3.1o)

Finally, substituting Eqs. 3.9 and 3.10 into Eq. 3.8 and evaluating at grid index, i,

and time level, n, with centered finite difference expressions for the spatial derivatives

results in the following expression for the change in the state variable from one time

level to the next.

=- + 2 -\ 2_,=/+\ 2A= A_
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where

jw Ou " +

- -_ -_ i-1/2 Otti+i/2/

+ \ ouI,+,/_ot I,+_/_ -_ ,_,/__ ,-,/_ _ _
(3.11)

_} (3.12)

One advantage of Ni's scheme is that it is cell based. To demonstrate, we introduce

the following cell based notation:

, At

OT) Aus

=

OT) AucAFc= -_ i+,/2

(3.13)

(3.14)

and

1 (ui_ 1 +u_)

- (3 5)%tO-'- _

Here AuB and Auc are called the changes at cells B and C respectively. The subscript

B refers to the control volume lying between grid points i - 1 and i and, the subscript

C refers to the control volume lying between points i and i + 1 as shown in Fig. 3.1.

Cast in this manner, this implies the correction to point i is composed of two parts.

The first part,

i[

[ jwAt_ w_-At2 - jwAt 5B

- [--7 _'_B+ _ "_' _2 BS;_
(3.16)

The
is the correction due to the change, AuB, taking place in control volume B.

second part,

1 [Auc AF ' At jwA_c](a,Jc = _ - c "E-;=

rj_at_ ,_=At= (_) At] (3.17)-- _ _xx
2 _Uc+ 2 _c+jwAtuc "_ c

is the correction associated with the change, Auc, occurring in control volume C.

Note that the expressions for (Sui) B and (Sui)c are similar with the exception of the

sign on two terms. Although these expressions resemble those presented by Ni [37],

there are some important differences. Most notably, there are terms which have a
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frequency dependence that are the result of the linearization process. These terms

will be shown in a subsequent section to play a major role in the stability of the

system.
To summarize, a control volume centered integration method is devised that em-

ploys the following operations in the determination of the correction to an arbitrary

grid point.

(1) Sweep through all cells computing the change in each cell using

Auc + jw_c = m Fi',_ - _+1 ÷ jw ui + ui+l At (3.18)
Ax 2

(2) Determine the corrections to point i and i+l through the use of the distribution

formulae

and

1 [ AFc At jwA_c(6_,)c-_ n_c- n-7-

_aUc + _Uc + j_At Sc -_

1[ aV, At ](Sui+1)c = _ Auc + c_- x jwASc

[j_o/xtA _o_At2_ (0Y)
- [--_Uc+ _ uc-jwAtUc -_

(3) Update the dependent variable by

u_.+1 = u _. + Sul

At] (3.19)

(3.20)

(3.21)
(3.22)

where both (Sui)s and (6ui) c are known from step 2.

(4) Apply appropriate boundary conditions at the inlet and exit.

(5) Continue the iteration procedure until the solution converges.

3.3 Basic Lax-Wendroff Integration Scheme (Two-

Dimensional Euler Equations)

The basic integration procedure outlined for the one dimensional model equation in

the previous section can be extended and applied to the linearized two-dimensional

Euler equations on a non-orthogonal, curvilinear grid (see Fig. 3.2 for nomenclature).

As in the development of the integration scheme for the one dimensional model

equation, the following five steps are performed during each iteration of the numerical

algorithm. For example, at enoch control volume, say C, the process is:
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Figure 3.2: Nomenclature used in the description of the computational cells

(1) Sweep through all cells computing the change in each cell using

Auc + jwAt _c -- AV 2 "_(_ - _'_) - 2 (_- _'_)

IF' +F' G:,+G' ]- 2 "'(,7,,,-,7,,)- 2 "'(&'-&')

[F:_+F' G' +G' ]

IF' +F' G' +G' ]}+ 2 _'(,7_,-,7=)- 2 _'(&'-&_)
(3.23)

where
1

AV = _ [(_:,_ - _,_,_)(rl,_, - rh,_) - (_,_ - _*,_)(rh, - r/,_,_)] (3.24)

(2) Determine the corrections to the four corner nodes through the use of the

distribution formulae

I[ J_ntn. ]
(6,,,_)c= _ [A_o- nfo- Ago _ oj

1[
(6_.)c = _ nuc + nit + Agc

jwAt2 AUc]

JwAt Auc]2

> ,
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1 [ jwAt_ ](s_,.)c= 4 LA"°+ Arc--Ago 5 _'_'cJ (3.25)

Again, the following notation has been introduced to simplify the expressions

afc- av

at (aC_a,,"- aF_ZX,m) (3.26)
Agc - A"V

where
1

_x#= _ (_',,,,,+ _., - L,,,- _.o)
1

,_,7'= 5 (,7,,,_+ ,1,,,- ,7,_- ,7.)
1

1
A_,,,= _ (,7,,o+ ,7,o- ,7,,,,- _...,)

(3) Update the dependent variable by

(3.27)

u_.+l = u _. + 6ui
l t

6ui = (6ui)a + (_SUi)B + (6Ui)c + (6Ui)D (3.28)

where ((SUi)A, ((SUi)B, ((_Ui)C, and (SUi)D known from step 2.

(4) Apply appropriate boundary conditions at the inlet and exit.

(5) Continue iteration procedure until the solution converges.

It should be noted that instead of a single equation (as in the model problem)

the Euler equations represent four separate equations. As such, the changes and

corrections described in the previous development are now vector quantities described

below. First, the changes in conservation variables are

£2kU: _---

(A/)

(Apu,)
(Ap_,)
(Ae)

(3.29)

Now, AF' and AG' can be obtained by the following expressions,

(Apu')

V (_xp_,,)+ U (-_/',_,,)+/',p,
V (Ap,_,)+ V (-_Av,)
L (_p,,')+_ (_Ah'o)

(3.30)

and
(Apu')

(_pv,) + V (_,)

-£ (A,_,) + v (-_Xh'o)

(3.31)
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where

(_Au')

(_Av')

(Ap')

( Ah'o)

= (apu')- _ (Ap')
= (Apv)-V (Ap,)

I (_ (Apu')= (7-I) (Ae')-

= (/,,e,)+ (ARC)- ho(Ap')

1

+ V (apv) + _ (_a_') + V (_AV))]

(3.32)

The final consideration is the time step, At. For speed in convergence, the larger

the time step the better, however, the time step must not violate the CFL (Courant,

Friedrichs, and Lewy) condition. For the scheme to be stable, the numerical scheme

cannot propagate the solution faster than the physical wave speeds. This is the so

called CFL condition. To this end, the following criteria is used to determine the

maximum allowable time step.

( AV AV )(3.33)at <__ir, -gAd- VA_'I + aAI ' -&X,7"- VA_"I + _a._

where

al= _/(a_') _+ (a_') _

and a is the speed of sound.

ar_ = _/(a_) _+ (A,_) _ (3.34)

3.4 Smoothing

The numerical equations presented can be applied to obtain solutions to inviscid,

rotational (and/or irrotational), subsonic, transonic and supersonic flow problems.

However, for subsonic flows a small amount of artificial viscosity must be added to

suppress the spurious sawtooth solutions permitted by the numerical solution tech-

nique. Furthermore, for transonic and supersonic applications the addition of viscous

like terms are needed to stabilize and capture shocks. Although it has been deter-

mined that some level of smoothing is imperative, care must be taken so as not to

add so much as to diminish the accuracy of the numerical algorithm. In the present

analysis, two different smoothing terms have been introduced. The first, used in tran-

sonic and supersonic flow regimes, is termed second difference smoothing. Although

this smoothing is first order accurate it only need be applied in the regions near the

shock. The second, used in both subsonic and transonic regimes, is termed fourth dif-

ference smoothing and is effective at reducing the numerical oscillations introduced.

As implemented, the solution procedure with only fourth difference smoothing re-

mains second order accurate.

To illustrate how the smoothing is added to the corrections (previously deter-

mined), we again consider the one-dimensional model problem. The correction to the

ith node with smoothing is found to be

6u, = (6ui)B + (6ui)c + (r2 (ui+l - 2ui + zti-1)
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+ a4 (ui-2 - 4ui_l + 6ui - 4ui+l + u_+2) (3.35)

where a 2 and a4 are coefficients of smoothing indicating the level of second differ-

ence and fourth difference smoothing added to the correction. Typically the values

range from 0.0 to 0.05 for the fourth difference smoothing coefficient, _r4, and 0.0 to

0.1 for the second difference smoothing coefficient, a 2. Equation 3.35 would seem

to indicate that the fourth difference smoothing has a difference stencil of five grid

points (corresponding to 25 grid points for two-dimensional Euler). As implemented,

however, the fourth difference operator can be generated by taking the second dif-

ference of the second difference operator. As a result, the difference stencil for the

one-dimensional model equation remains 3 grid points (corresponding to 9 grid points

for two-dimensional Euler) and hence the smoothing operators can be adapted to the

cell based distribution formulas previously developed.

3.5 Properties of Ni's Scheme

At this point in the analysis, the analytic problem developed in Chapter 2 has been

discretized. The dependent variables are now defined at discrete locations or nodes.

Spatial derivatives have been approximated using finite volume techniques resulting

in a system of algebraic equations. Thus, the original problem involving a continuous

domain and partial differential equations has been transformed into a discrete system

of algebraic equations. At this time it is important to determine whether the solution

obtained by solving the algebraic system is a good approximation to the original

system of PDEs. Among the issues considered in the following sections are consistency

and stability.

3.5.1 Accuracy and Consistency

Simply stated, the truncation error of a scheme can be defined as the difference

between the partial differential equation and the finite difference approximation to it.

In other words,
Errortr_r_c_tio,_ = P D E - F D E (3.36)

The order of the scheme is a measure of the magnitude of the truncation error.

Consistency deals with the extent to which the finite-difference equations approximate

the partial differential equations. A finite difference representation of a PDE is said
to be consistent if it can be shown that the truncation error vanishes as the mesh is

refined.

A formal development of these two concepts will now be presented. Again, it

is convenient to illustrate these ideas with a less complicated model equation which

resembles the linearized Euler equations in form and behavior. The model equation

considered is the one-dimensional wave equation, which when linearized and reintro-

ducing a pseudo time dependence takes the following form

u_ + jwu + cu_ = 0 (3.37)
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where the subscripts t and z represent differentiation with respect to time and the

x-direction respectively. Note that Eq. 3.37 is identical to Eq. 3.6 when c is equivalent

to the Jacobian (OF/OU). With this in mind, the finite difference expression for this

model equation is then

( )u."+1 = u."-ja u['-I +2u_'+u_'+l + (ja-1) u '_ -u '_
' ' 4 2 i+1 i-1

A2(u _ - 2u_ + u" ) - c_2 ( u_'-I + 2u_' +u'_+l) (3.38)+ "_ i+1 _-1 "_" 4

where the following simplifying notation has been introduced

a = wAr

At (3.39)
=

where a is a reduced frequency based on the time step, and A is the so-called CFL

number. Equation 3.38 is the final finite difference expression for the model equation.

Using this equation and Taylor expanding about u_', (for clarity the subscripts i and

n are dropped) the following modified equation is obtained.

u_: + jwu+cu_=uk-j 6c 2 - 24_

032)_2 A.X2 .oj3X3Ax 3"+ u_ 2c + 3 6c 2

+

[ tAx3 wax a w2 XAx s 7 (3.40)
+ - 96c

The modified equation is the partial differential equation which is actually solved

when a finite difference method is applied to a PDE. It is important to emphasize

that the equation obtained after substitution of the Taylor-series expansion must be

used to eliminate the higher-order time derivatives rather than the original PDE. This

is due to the fact that a solution of the original PDE does not in general satisfy the

difference equation.

Upon examination of Eq. 3.40 it is obvious that the left hand side of the equation

is the original model PDE. The right hand side of the equation is known as the

truncation error. It is important to note that as the grid is refined the error terms

on the right hand side go to zero like Ax 2. As implemented, the scheme is therefore

second order accurate in both space and time and hence is consistent. Although this

alone is not surprising from previous analyses on the Lax-Wendroff scheme, what is

unique about this analysis is that the inclusion of the complex source term (jwu)

which changes the character of the truncation error. Any term with an w dependence
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would traditionally not appear in a time domain analysis. As wilt be shown, these

terms not only affect the character of the solution, but have an important influence

on the stability of the system.

3.5.2 Stability

Lax's equivalence theorem states that given a properly posed initial value problem

and a consistent finite-difference approximation to it, stability is the necessary condi-

tion for convergence [2]. Convergence means that the solution to the finite-difference

equation approaches the true solution to the PDE having the same initial and bound-

ary conditions as the grid is refined. A stable numerical scheme is one for which errors

from any source (round-off, truncation, etc.) do not grow as the calculation proceeds

from one time step to the next.

To illustrate these ideas, we consider again the difference expression for the one-

dimensional model equation (the frequency domain version of the wave equation)

given by Eq. 3.38. Two separate stability analyses are performed. The first analysis

employs a classic Von-Neumann stability analysis. In this approach the domain is

assumed to be infinite, hence no special consideration of the boundaries is taken into

account. It will be shown that the modified Ni's scheme, as applied to the model

equation, is unconditionally unstable as determined for an infinite computational

domain. Next, an analysis is presented which determines the stability of the modified

Ni scheme on a finite domain. It will be shown that the finiteness of the computational

domain has a stabilizing effect on the system and thus allows for converged solutions

to the finite difference equation.

Von-Neumann Stability Analysis

Using the previously defined notation, Eq. 3.38 can be written as,

u?+ 1 = u" -j +A + (I+A)-

._ )_

To perform a Von-Neumann stability analysis, the solution of Eq. 3.41 is assumed to

take the form

u? = _-,,eik,,iA_ (3.42)

where

u_,+l

Urt
i-1

U n
i+l

_ ._+leik,,,iA_

._ _,ejk,_(i-1).',x

= _,eJk,_(i+l)A= (3.43)
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Substitution of Eqs. 3.42 and 3.43 into Eq. 3.41 gives

= + + +

(3.44)

For stability, the magnitude of the amplification factor, [G] , must be less than or

equal to one for all wave numbers, k,_, at the desired frequency, _. Based on this

criteria it would indicate that some restrictions might be placed on At and Az or

more generally the Courant number, A, (also known as the CFL number) for the

system to be stable.

At (3.45)
Az

Figure 3.3 shows that the stability limits of the one-dimensional wave equation in

the time domain (w = 0). As expected, the results show that CFL numbers greater

than unity cause instabilities to occur. This agrees with classical analyses of the time

domain wave equation [2]. Figure 3.4 demonstrates the effect the jwu source term

has on the system's stability. In this example, the reduced frequency, k -- a/)_, is

1.0. It is evident that IGI is greater than one for some wave numbers regardless of

the Courant number indicating unconditional instability. However, the influence of

the boundary conditions has not been included in this analysis. In a Von-Neumann

stability analysis, the implicit assumption is that the computational domain is infinite

(or that the computational domain is periodic). In the next section the effects of the

boundaries on the system's stability will be investigated.
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Figure 3.3: Von-Neumann stability analysis, one-dimensional model equation: k =

0.0, _ = 0.6, 0.8, i.0, 1.2.
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Figure 3.4: Von-Neumann stability analysis, one-dimensional model equation: k =

1.0, _ - 0.6, 0.8, 1.0, 1.2.
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Eigenvalue Stability Analysis

In the previous section, a traditional Von-Neumann stability analysis indicated that

the discretized version of the model equation was unconditionally unstable. Strictly

speaking, however, the Von-Neumann analysis holds only for infinite or periodic com-

putational domains. Furthermore, it is the longer wavelength modes that are most
unstable. These are the modes most likely to be influenced by the finiteness of the

computational domain.
The finite difference representation of the model PDE is a so-called explicit scheme.

An explicit scheme is one for which only one unknown appears in the difference

equation in a manner which permits evaluation in terms of known quantities. In

matrix notation the finite difference expression can be written as

= [A] (3.46)

where [A] has the following structure

B.C.

[A]=

x X X

• o

X X x

B.C.

(3.47)

It is apparent that the stability is now governed by the spectral radius of [A]. If the

maximum eigenvalue of [A] is less than or equal to unity, the scheme is stable.

Figure 3.5 shows the results of an eigenanalysis of the finite difference represen-

tation of the one-dimensional, time domain (w = 0) model equation for various CFL

numbers• For this figure, periodic boundary conditions were implemented in an at-

tempt to duplicate the results determined by the Von-Neumann analysis shown in

Fig 3.3. Note the excellent agreement between the Von-Neumann analysis and the

eigenvalue analysis. Next, Fig. 3.6 provides a similar analysis for the unsteady case

when the reduced frequency, k, is 1.0. Again periodic boundary conditions were

used and the results agree with those presented in Fig. 3.4 determined from the

Von-Neumann analysis. These results indicate that the discretized unsteady repre-

sentation of the one-dimensional wave equation are unconditionally unstable when a

periodic computational domain is used.
In order to mimic the behavior of the linearized Euler equations more closely,

we now replace the periodic boundary conditions previously used with nonreflecting

boundary conditions at the inflow and exit boundaries (these boundary conditions

are analogous to those used in the linearized Euler analysis which will be presented in

Chapter 4). Figure 3.7 shows the effect the boundary conditions have on the system's

stability. In this case, the eigenanalysis of the discretized system indicates that the

Lax-Wendroff scheme is stable. In effect, the finiteness of the computational domain

has a stabilizing effect on the numerical algorithm. Figure 3.7 presents the eigenvalues

of the system for a range of reduced frequencies, k, for a CFL number, A, of 0.8. This

was accomplished by varying the number of grid points (thereby changing Az) in a
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Figure 3.5: Eigenvalue analysis of one-dimensional model equation: k = 0.0, A = 0.6,

0.8, 1.0, 1.2 (periodic boundaries)

duct of length 1.0. The frequency based on the duct length was held constant, w =

5.0. The interesting behavior to note here is that the "root locus" determined by

the eigenanaiysis approaches that of the Von-Neumann analysis as the grid is refined.

This is due to the fact that in the limit the domain appears to become infinite (Ax

approaches zero) and hence more closely models the Von-Neumann analysis.

The numerical algorithm used in the present research has been shown to be both

consistent and stable as long as the boundary conditions used in the far field stabilize

the long wavelength modes. By virtue of Lax's equivalence theorem the necessary

conditions for convergence have been met.

3.5.3 Conservation

The PDE's of interest in this research all have their basis in physical laws such as the

conservation of mass, momentum and energy. Such a PDE represents a conservation

statement at a particular point. The criteria necessary for a finite difference scheme

to be considered conservative is now discussed. Consider the integral form of the

continuity equation for a fixed control volume

I V.pVdV=iPV.ndS=O (3.48)

To determine whether the finite-difference representation of the PDE has the conser-

vative property, it must be established that the discretized version of the divergence
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Figure 3.6: Eigenvalue analysis of one-dimensional model equation: k = 1.0, A = 0.6,

0.8, 1.0, 1.2 (periodic boundaries)

theorem is satisfied. To do this the integral on the left is evaluated by summing

the finite-difference representation of the PDE at all grid points. If the difference

scheme has the conservative property, all terms will cancel except those which repre-

sent fluxes at the boundaries. Stated another way, Eq. 3.48 holds regardless of what

the control volume is when the analytical equations are modeled computationally;

the flow field is governed by the boundary conditions. For this example, it can be

determined whether the mass flux in equals the mass flux out. If the scheme did not

have the conservative property, the numerical solution might permit the existence of

mass sources and sinks [2].

Ni's scheme as implemented in the present research exhibits this telescoping prop-

erty and is indeed a conservative finite difference representation. This property is

necessary if the flow fields to be analyzed have discontinuities such as shock waves or

wakes. Chapter 6 investigates this idea further.

3.6 Multiple-Grid Accelerator

In an effort to reduce computational time associated with the solution of the linearized

Euler equations, one would like to use a coarse grid system. The problem in doing this

is the truncation errors described previously have been determined to be proportional

to the square of the grid spacing. Hence, to coarse a grid leads to insufficient accuracy.

One way to overcome this problem is to implement the multiple- grid technique [13,37]



42 CHAPTER 3. BASIC NUMERICAL INTEGRATION SCHEME

I_ Eigenana_is. On'toga= O.1

E_;_man,_is. Omega - 0.05Un

Ek;er_aJysts, Om,_a - O.02S

i -
_8
ro

"7,1.20 -0.80 -0.40 0.00 0,40
Re_G

Von-Ne*Jrnamn Anakt_m, Omega. 0.I, 0.05, 0.02_

i . i

0.80 1.20 1.60 2.0O

Figure 3.7: Eigenvalue analysis of one-dimensional model equation: k = 0.025, 0.05,

0.1, k = 0.8 (nonreflecting boundaries)

where the solution on the fine grid is obtained by cycling the numerical solution

procedure between fine and coarser grid systems. The underlying philosophy of the

multiple-grid accelerator is to use the coarse grid to propagate the corrections of the

fine grid at rates appreciably greater than otherwise possible on the fine grid alone.
The result is then to obtain results with accuracy indicative of the finest grid system

while obtaining gains in speed of convergence attributable to coarser grid structures

without significantly adding to the computational time per iteration.

To implement the technique, a series of coincident grids of varying spatial reso-

lution are required. The finest grid will be designated as the zeroth level grid and

successively coarser grids will be designated first, second, etc. level grids. These

higher level grids are easily generated by deleting every other node in the grid on

the previous level. Figure 3.8 provides a perspective view of three multi-grid levels.

Recognizing that the corrections are due to wave movements and the distribution

formulae are the systematic tools to propagate these waves, a simple multiple-grid

scheme for solving the Euler equations is constructed by combining the basic numer-

ical integration method with the following coarser grid solution procedure.

Instead of the finite volume approximation as given by Eq. 3.23, the change, Au 2h,

occurring in the control volumes of the 2h grid are determined by

Au2h = T_h6uh (3.49)

where T_ h is an operator which transfers to each control volume of the coarse grid the
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Figure 3.8: Perspective view of multiple grid acceleration levels

correction 5u h of the centered fine grid point, or alternatively a weighted average of

the corrections at those fine grid points defining the coarse control volume. Making

use of previously developed notation, the generalized distribution formulas

1[
,[
,[(6,.,,,o,)c,= _ A_,_,_,+ _ f_.,,,+/,,_=,,,,c,

,[(,_,..,)c,= _ /,,u_._+ _:$,"- _g_,

J2At A U2ch,]

J2 At AU2ch,]

JwA_ Au_']2 (3.5o)

(where the prime refers to the coarse cell, C, see Fig 3.2) are then used to propagate

the change, /ku2_, to the nearby coarse grid points. Next, the corrections of the 2h

grid are found by

2h 2h 2h (6u 2h _ (3.51)6,,_".,= (6_,,_,),,,+ (,%o,)B,+ (,5,,,,.,)o,+_ ,,,.,_,_,

After finding /Xu 2h on all coarse grid points, the flow properties at the finest grid

(level zero) are updated by
u _ = u + I_h6u 2_ (3.52)
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where I_h is a linear interpolation operator which interpolates the coarse grid correc-

tions to give the corrections at each grid point on the finest mesh.

The above process is repeated on progressively coarser grids until the coarsest

grid is reached. The truncation error associated with this process is second-order on

the finest grid because the spatial approximation to the governing equation is applied

only on the finest mesh. With multiple grid acceleration, the use of coarser grids

reduces the computational work required to propagate unsteady disturbances out of

the computational domain so that a steady state is rapidly reached. For a detailed

description of the multiple grid acceleration technique the reader is referred to [13,37].

3.7 Summary

In this chapter, the linearized Lax-Wendroff integration scheme used in the present

analysis was developed. Properties of the resulting scheme, such as stability, con-

sistency and accuracy, were also investigated. The basic Lax-Wendroff scheme was

found to be second-order accurate and conditionally stable. In the next chapter the

treatment of the far-field boundaries is presented.



Chapter 4

Far-Field Boundary Conditions

4.1 Introduction

Because the computational domain must be finite in extent, so-called far-field bound-

ary conditions must be applied at the inflow and outflow boundaries. These bound-

ary conditions can, if improperly formulated or applied, reflect unsteady disturbances

back into the computational domain corrupting the unsteady solution. Furthermore,

the better the far-field boundary condition, the closer the inflow and outflow bound-

aries can be placed to the blade row of interest, thereby reducing the number of grid

points and the corresponding computational time.

Nonreflecting boundary conditions have been a recurring topic of investigation in

numerical analyses, and for aeroelastic analyses in particular [19]. Previous efforts

have focused on matching the analytical behavior of the governing equations in the

far-field to the discretized governing equations. Verdon et. al. [49] and Whitehead

and Grant [56] matched the known analytical far-field behavior of the linearized po-

tential equation to finite difference and finite element representations of the linearized

potential equation on the interior of the domain. Hall and Crawley later applied a

similar technique to the linearized Euler equations [24]. Giles has developed approx-

imate boundary conditions for time marching Euler applications [16]. All of these

approaches are based on analytical descriptions of the eigenmodes of the governing

flow equations.

In this report, we present an alternative nonreflecting boundary condition formula-

tion that is both more general and more accurate than previous boundary conditions

based on analytic descriptions of the far field. The exact far-field behavior of the

discretized equations themselves is found by solving a numerical eigenvalue problem.

The resulting eigenmodes are then used to construct numerically exact, nonreflecting

boundary conditions. In addition to being exact, the present formulation has the ad-

vantage that it is generic and can be applied to other flow models (such as potential

and Navier-Stokes equations) and can be extended to three dimensions.

To aid in the understanding and development of the new numerically exact far-field

boundary conditions, three separate far-field boundary conditions are presented. The

first two are analytical in nature, i.e., the analytic behavior of the governing equations

in the far field is determined and then coupled to the numerical integration scheme.

45
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These approaches provide important insight into the far-field behavior. Finally, the

new numerically exact far-field nonreflecting boundary conditions used in the present

investigation is presented.

4.2 Characteristics Of The Linearized Equations

The following sections present the three different ways of implementing nonreflecting

boundary conditions at the inlet and exit of the computational domain.

4.2.1 One-Dimensional Characteristics

The easiest nonreflecting boundary conditions to develop and apply are the so-called

one-dimensional characteristic boundary conditions. Hence this is an appropriate

place to start the development of the far-field boundary treatment.Recall that the

grid motion is generated such that grid motion vanishes in the far field. This reduces

the governing equations in the far-field to

0u' OF' 0G'
-- _ =0 (4.1)
at +-_z + Oy

If the unsteady disturbances in the far field have large cicumferential wavelengths,

then the spatial derivative in the circumferential direction may be neglected so that

Ou' OF'
0"'_- q- 0"_" = 0 (4.2)

it will be beneficial for both the development and the understanding of the far-

field behavior to use primitive variables rather than conservation variables in the

subsequent analyses. To convert from the conservation variable form used thus far to

the primitive variable form, a linear transformation is applied, i.e.,

where

and

u' = [L]u' (4.3)
P

, ?A !

Up ?31
(4.4)

i 0 0 0

_ 1 0 0

[L] _ (4.5)-- 1 0-- 0

(7-1)_ -(7-1)U -(7-1)V 7-I

Rewriting Eq. 4.2 in primitive variable form, and assuming that the steady flow is

uniform in the far field gives

0u' 0u'
÷ [A] _-_-_p - 0 (4.6)

0t k "l _X
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where [A] is given by

[A] =

i

U _ 0 0
0 U 0 1

P

0 0 U 0

o 7p 0 U

(4.7)

The behavior of this system of equations (Eq. 4.6) can be determined by an eige-

nanalysis of the matrix [A]. One can decouple the equations in Eq. 4.6 by using a

similarity transformation. Pre-muItiplying the Eq. 4.6 by the matrix of left eigenvec-

tors, [T] -1 gives

0w0"'_ + [A] = 0 (4.8)

The new variables, W, in Eq. 4.8 are the so-called characteristic variables given by

/wl)w2W = (4.9)
W3

W4

which are related to the primitive variables by

W = [T]-lu'p (4.101

and

u' =[T]W (4:11)
P

where [T] is the matrix of right eigenvectors. The diagonal matrix [A] can be written

as

]U-_ _0 0 0

[A] = [T]-I[A][T] = 0 U +'g 0 0 (4.121
0 0 U 0
0 0 0 U

where _ is the steady flow speed of sound.

Each of the diagonal entries of [A] is the propagation speed of the corresponding

characteristic wave. Consider a typical cascade operating in a regime where the axial

Mach number is subsonic. There will be three downstream moving waves and one

upstream moving wave. The waves have the following physical interpretation. The

first characteristic, wl, is given by

w I = u'- __/-- (4.131
pa

This corresponds to an upstream moving pressure wave. Likewise, the second char-

acteristic, w2, is given by

w2 "- u' + K (4.14 /
pa
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which corresponds to the downstream moving pressure wave. The third characteristic,

w3, is found to be an entropy wave having the form

P'
W3 fir _'2

Finally, the fourth characteristic, w4, represents a vorticity wave as is given by

w4 =v' (4.16)

Note that the vorticity and entropy waves convect with the flow, whereas the pressure

waves propagate at the convective speed plus or minus the acoustic speed.

Although the nonreflecting far-field boundary conditions based on one-dimensional

characteristics can be used in some situations successfully, their effectiveness is limited

primarily to cases with low interblade phase angles corresponding to small relative

motions of adjacent blades.

4.2.2 Two-Dimensional Characteristics

Hall and Crawley [24] extended the above analysis to calculate the analytical behavior

in the far field for the two-dimensional Euler equations. As in the one- dimensional

approach, the grid motion in the far-field vanishes leaving the familiar unsteady per-

turbation equation
0u' 0F' 0G'

0--5-+ + = 0 (4.17)

Again, it is more convenient to work with the equations in primitive variable form.

Furthermore, it is assumed that the steady flow is uniform in the far-field so that

Eq. 4.17 becomes

On', Ou' [B]Ou'p= O (4.18)
O'-T"+ [A] -:'_xP + Oy

where [A] is the matrix which appears in Eq. 4.6 and [B] is given by

[B] =

w

v o _ o
0 V 0 0

o o V_
0 0 7F V

(4.19)

Consider the case where the cascade is vibrating with interblade phase angle, a,

and frequency, w. Since the solution is periodic in the circumferential direction and

since the behavior of waves in the far-field is of interest, a more natural representation

of the solution in the far field is given by the following Fourier series
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where j = _/'Z'f, G is the blade-to-blade gap, and k,_ is a spatial wave number to
I

be determined later. The coefficients of the Fourier series, up,,, are determined using

the Fourier transform given by

u' 1 [a u' e-J(_+2'_)'_dy (4.21)
Pm'- V J0 P

where the integral in Eq. 4.21 is evaluated numerically using the trapezoidal rule.

Substituting Eq. 4.20 into Eq. 4.18 gives

OO

I

E (w[I]+ k,.,,[A] + tim[B]) up.e (/_*+jk'=+jz'_} = 0 (4.22)
_rn oo

where [I] is the identity matrix and fir,, = (a + 2_rm)/G. In order for Eq. 4.22 to be

true, each term in the series must independently vanish such that

(w[I] + k,_[A] + _,,[B])u' = 0 (4.23)
pm

Since w and _,_ are prescribed quantities, Eq. 4.23 is an eigenvalue problem for the

eigenvalues km and the corresponding eigenvect0rs u'.

As in the development of the one-dimensional boundary condition, the right eigen-
I

vectors can be assembled into a matrix [T]. Then the Fourier coefficients, up,,, can

again be written in terms of the characteristic variables, W,_ . The two-dimensional

characteristics are given by

W,_ = [T]-lu'p,. (4.24)

After some manipulation, it can be shown that

(w,)W2

W3

W4

_ _
0 fl.,V+_ -_.,U - _--_

_
0 _mV+_ -fi.,g + .-_

1 0 0 -_

o &,U +,,.,

u,_

v_
P,_,

(4.25)

The matrix in Eq. 4.25 is a function of the steady flow variables, the excitation

frequency w, and the circumferential wave numbers _. The resulting axial wave

numbers are

(4.26)
kx,,, = _-2 _ _2
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k2,, = _2 _ _2 (4.27)

+ (4.28)
k(3'4)"* -" U

As in the one-dimensional boundary conditions of the previous section, these charac-

teristics correspond to upstream and downstream moving pressure waves, an entropy

wave, and a vorticity wave. To recover the one-dimensional characteristics, a fre-

quency, w, of 1.0 and circumferential wave number,/3,,,, of 0.0 can be substituted into

Eq. 4.25.

4.2.3 Exact Numerical Characteristics

Presented here is a more general method of calculating the characteristic waves for

two-dimensional, linearized unsteady flow solvers such as those developed for solving

the linearized potential equation and the linearized Euler equations. Consider the

linearized Euler equations discretized on an H-grid with I nodes in the axial direction

and J nodes in the circumferential direction. Even though the solution procedure

selected for this research (Chapter 3) uses a pseudo-time-marching technique and is

iterative in nature, the converged solution can be thought of as satisfying a large

sparse matrix equation of the form

Bt-a Ci-a

At Bt

B1 C1

A2 B2 C2

• *

u_ b 1

u2 b2

ui__ bi-x

Ul , , bl

(4.29)

where ui is the vector of perturbation variables along the i th axial grid line, and bi

is the vector of inhomogeneous terms that arise from, for example, unsteady blade

motion. As previously noted in the section detailing the deforming grid, the grid

motion vanishes in the far-field. Hence the vectors b_ go to zero in the far field. The

sub-matrices A_, Bi, and Ci are large sparse matrices, each of size 4J x 4J. The entries

in the these sub-matrices depend upon the details of the particular finite volume

or finite difference scheme used in the unsteady flow solver as well as the steady

flow solution• The details of the finite volume scheme were presented in Chapter

3. The result of this approach is that the sub-matrices A i, Bi, and Ci are block

tridiagonal, with the blocks being 4x4 matrices. As previously described, upstream
and downstream of the blade row periodic boundary conditions are prescribed to

reduce the computational domain to a single passage. Therefore, terms also appear

in the upper right and lower left corners of the sub-matrices•

If in the far field the grid spacing in the axial direction is uniform and the stream

line gridlines are straight and aligned with the steady flow, then the discretized equa-

tions are identical from axial station to axial station• The discretized equations at
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the i th axial station in the far-field can be expressed as

[A] {ui-1} + [S] {u,} + [C] {u,+_} = 0 (4.30)

where now the matrices [A], [B], and [C] are independent of i. Since the equations

are identical from station to station, a solution which satisfies the discretized far-field

equations at the i th station must also satisfy the equations at the i + 1 th station.

This, along with the insight that it is desirable to model the motion of waves in the

far-field, suggests that solutions in the far field take on the following form

{ui} = _ z_ {urn} w,_ (4.31)
tit

where ui is the solution at the i th station, z,_ is an eigenvalue, _,_ is the corresponding

eigenvector, and w,_ is a coefficient that indicates how much of each eigenmode is

present in the solution. Substitution of Eq. 4.31 into Eq. 4.30 gives

zi -1 [[A] + zm[B l + z_[C]] {_m} w,,, = 0 (4.32)
tn

For the series in Eq. 4.32 to be zero, each term in the series must vanish so that

[[A] + z,,,[Bl + z_[C]] {_=} = 0 (4.33)

This is recognized as a second order eigenvalue problem for the eigenmodes, {_,_},

and the corresponding eigenvalues, z,,,. The eigenvalue problem is put into a more

conventional form by recasting Eq. 4.33 in state-space form.

[0 ,](u.) z.[,°](°-)-A -B zm_,, 0 C z,_um

Roughly speaking, the eigenmodes of Eq. 4.34 correspond to two-dimensional pres-

sure, entropy, and vorticity waves which can travel up and down the duct. The

eigenvalue z,,, is closely related to the axial wave number, kz, _, of an eigenmode. In

particular,

z i = ezp [ji (kz,,Az + ky,,Ay)] (4.35)

or

fin(z,,,) Ay (4.36)

where Az and Ay are the axial and circumferential shifts in the grid from one axial

station to the next in the far-field. The matrices [A], [B], and [C] are obtained

by careful examination of the iterative linearized Lax-Wendroff solution algorithm.

These matrices are actually quadratic functions of the frequency of blade vibration,

w. Rewriting Eq. 4.34 in the familiar generalized eigenvalue problem notation allows

for a clearer presentation of the ensuing steps. Thus we write that

[Mlx = z[N]x (4.37)
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where [M] and [N] are general complex matrices and z and x are the eigenvalue and

right eigenvector respectively. In the present work EISPACK is used to solve this

eigenvalue problem for the desired eigenvalues and eigenmodes.

In figures 4.1 and 4.2 the eigenvalues computed using the present algorithm are

compared to the analytical modes predicted using the two-dimensional analytical

analysis presented in the previous section. Figure 4.1 shows the eigenvalues of the

upstream far-field modes of the Lax-Wendroff scheme for a typical unsteady flow

calculation. In this example, the blade-to-blade gap, G, is 1.0, the inflow Mach

number, M_oo, is 0.7, the inflow angle, fl_¢¢, is 55 °, the reduced frequency, k is

1.287, and the interblade phase angle, _, is -90 °. The grid spacing between axial

stations in the far-field in the z and y directions is 0.0601 and 0.0716, respectively.

Figure 4.2 also presents the eigenvalues of the continuous linearized EuIer equations

as they would appear in the computational domain. Note that the eigenvalues of the

discretized system agree well with the analytically determined eigenvalues for those

eigenvalues near z = (1,0). These eigenvaiues correspond to longer wavelength(smaller

interblade phase angle) modes that are well modeled by the Lax-Wendroff scheme.

Computational modes with shorter wavelengths propagate with speeds and decay

rates different from their corresponding analytical modes. Finally in Fig. 4.1, note

the computational eigenvalues outside the unit circle in the left half-plane. These

modes are purely computational with no physical counterparts.

By examining the eigenvalues of Eq. 4.37, one can determine whether the mth

eigenmode is traveling away from or towards the rotor. For the flutter problem,

unsteady disturbances are generated by the vibratory motion of the blade row and,

therefore, no unsteady waves should travel toward the blade row in the far-field. At

the upstream far-field boundary, an eigenmode with eigenvalue z,_ having a magnitude

less than unity represents an incoming wave which decays as it progresses towards

the blade row and hence should be excluded from the solution (this corresponds to

the case where the wave number, k_, has a positive imaginary part). Conversely,

if the magnitude of the eigenvalue z,,, is greater than unity, then the corresponding

eigenmode is an outgoing mode which decays as it propagates away from the blade row

and hence should be retained in the solution (this corresponds to the case where the

wave number, k,,_, has a negative imaginary part). If the magnitude of the eigenvalue

z,_ is unity, corresponding to the imaginary part of k,_ being zero, then additional

analysis is required to determine the direction of wave propagation.

In practice, eigenvalues which fall on the unit circle are one of two types: repeated

or non-repeated roots. The repeated roots, approximately speaking, correspond to

vorticity and entropy modes that convect with the free stream. Since the eigenvalues

are repeated, these modes are easily identifiable as rightward moving waves (assuming

the flow is left to right) and will be excluded upstream and retained downstream.

The remaining modes to be analyzed have eigenvalues z,_ with magnitude unity

and are distinct. These modes correspond to upstream and downstream moving

pressure modes that propagate unattenuated. In order to determine the direction of

propagation of theses eigenmodes one must examine the group velocity. The group
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Figure 4.1: Eigenvalues of upstream far-field modes of discretized equations

velocity, Vg, is given by
Ow 1

Vg = - O"k = Ok/Ow (4.38)

If the group velocity is positive, there is a net flux in energy to the right (incoming

mode upstream, outgoing mode downstream). Conversely, if the group velocity is

negative, then the net flux in energy is to the left (outgoing mode upstream, incoming

mode downstream).

To determine the group velocity, we first rewrite the eigenvalues as functions of

the axial and circumferential wave numbers,

z' = ezp [j (k=Azi + k_Ayi)] (4.39)

Next, differentiating Eq. 4.35 with respect to w and rearranging yields

Ok= 10z (4.40)
Ow = J zAz Ow

The last piece of information needed to determine the group velocity is Oz/Ow. To

determine Oz/Ow, the following perturbation analysis is performed. Recall Eq. 4.37
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Figure 4.2: Analytically computed eigenvalues of far-field modes

is

[Mix=z[g]x
Consider a perturbation series expansion of Eq. 4.37 about a known solution, i.e.,

([M] + [M'])(x + x') = (z + z')([N] + [g'])(x + x') (4.41)

where the primes indicate a small perturbation. Retaining only the first order terms

and multiplying by the left eigenvectors, yT, gives

yT ([M]- z[N]) x' + yT ([M']- z[g']) x = z'yT[g]x (4.42)

The first term in Eq. 4.42 is identically zero by definition. The resulting relationship

for the perturbation of the eigenvalue, z', is

z' = yT(M'-- zg')x (4.43)
yTNx

Therefore, one can infer that
_N

O__z_z= yr (LM_ zx.j)x (4.44)
Ow yTNx
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Finally, the group velocity can be written as

V -1 _ +j yT (LM _ z__N) X (4.45)
g zAx yTNx

Hence, once the eigenvalues and the left and right eigenvectors of the individual

modes are known, the group velocity and therefore the direction of propagation can

be determined as well.

4.3 Application of Far-Field Boundary Conditions

Having computed the behavior of characteristic waves in the far field, we now use the

characteristics to construct approximate and exact nonreflecting boundary conditions.

4.3.1 One-Dimensional Nonreflecting Boundary Conditions

First, we consider the application of the one-dimensional characteristic nonreflecting

boundary conditions. As an example, the implementation for an upstream, far-field

boundary node is considered. After a Lax-Wendroff iteration has been performed,

but before the far-field boundary conditions have been applied, the estimate of the

solution of a boundary node is given by

u'-+l = u'- + 6u,n (4.46)
temp

Using Eq. 4.3, the solution vector in conservation form can be transformed into prim-

itive variable form such that
u',+l = [L]u'n+l (4.47)

ptemp k J _CYnp

In general, u '"+1 contains both incoming and outgoing waves. The amount of each
p¢¢mp

of these waves is found by Eq. 4.10. With the characteristics now known, the waves

determined to be entering the domain are zeroed since these waves could only be

the result of a reflection at the far-field boundary. In subsonic flow, for example,

the upstream boundary would have three characteristics entering the domain (one

pressure, one vorticity, one entropy) which must be eliminated and one outgoing

characteristic (pressure) that is left unchanged. This is acc6mplished as follows:

W-+I = [/i.][Tl-lu'n+l (4.48)
ne_u L--_ L J _temp

so that
" -1 ',+1 (4.49)u '-+1 = [T][A][T] up,,m"

P

where [/_] is a diagonal matrix with ones in the entries corresponding to outgoing

waves and zeroes in the entries corresponding to incoming waves. Finally, to convert

the solution back into conservation variable form

u'_+l = [Ml-lu'-+l (4.50)
t J p_emp
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or

u'-+l = [L]-I[T][_,][T]-I[L]u_+_p (4.51)

Downstream, the same procedure is followed except that now three characteristics

are outgoing and must be retained and only one characteristic is incoming and need

be deleted.

Note that the one-dimensional characteristic nonreflecting boundary conditions

are approximate; these boundary conditions are most effective when applied to long

circ_ferential wavelength (low interblade phase angle) disturbances.

4.3.2 Two-Dimensional Nonreflecting Boundary Conditions

After application of each Lax-Wendroff iteration, but before the far-field boundary

conditions have been applied, the estimate of the solution on (for example) the inflow

boundary is updated using Eq. 4.46. Again, the solution u '"+I will contain a contri-ptemp

bution of incoming and outgoing modes. To apply the two-dimensional characteristic

boundary conditions, we must first determine the components of each Fourier mode

using Eq. 4.21. Having computed the Fourier modes, two-dimensional characteristic

nonreflecting boundary conditions are applied as follows:

u'-+, = [T][_,I[T]-,u'-+' (4.52)
pm L J Pmtern P

where again, [A] is a diagonal matrix of zeroes and ones which eliminate incoming

modes and [T_] the matrix of right eigenvectors.
Once the characteristic two-dimensional boundary conditions have been applied

to all of the Fourier modes, the modified modes are summed together using Eq. 4.20

to obtain the solution in primitive variable form on the far-field boundary. Finally, to

obtain the updated solution in conservation form, the following equation is applied

at every boundary node, i.e.

U_+I I In+l= [L]- u_,,_ (4.53)

As a final note, in practice a finite number of Fourier modes are used (typically m

= -2,-1,0,+1,+2). The remaining modes are not used to update the solution on the

boundary.

If the steady flow is uniform in the far field, then the boundary conditions de-

scribed above are analytically exact. However, if the steady flow is nonuniform, then

they are approximate. Also because the numerical characteristic waves differ some-

what from the analytical characteristics due to truncation error, some small reflections

will occur for grids with finite resolution. Finally, it is difficult to extend the two-

dimensional characteristic nonreflecting boundary conditions to three dimensions due

to the difficulty in obtaining analytic descriptions of three-dimensional characteristic

waves if the mean flow contains swirl. For these reasons, a more general numerically

exact was developed and is presented in the next section.
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4.3.3 Numerically Exact Nonreflecting Boundary Conditions

In this section, we apply the numerically exact nonreflecting boundary conditions

developed in section 4.2.3. Consider the solution along two neighboring grid lines in

the upstream far-field region (stations i and i + 1). Together, the solution at these

two grid lines can be thought of as the state of the solution at the i th grid line. In

general, this solution will contain components of all the eigenmodes, incoming and

outgoing. The state vector can be expressed in terms of the characteristic variables,

W, as

{'}u,, = [EI[AI,W (4.54)
U/÷I

where [E] is the matrix of eigenvectors found by solving Eq. 4.37 and [A] is the

diagonal matrix of eigenvalues. Therefore the state vector at the inflow boundary is

related to the state vector at the second axial grid line by the matrix

{} {}[ ]{}u,_ = [E][A]-'[E]-' u? T1, TI_ , u? (4.55)
uS u3 = T_I T_ u3

where [T] is a transition matrix. The solution at the upstream boundary is then

related to the solution on the interior by

{'}{ul} = [ Tll T_2 ] u, 2 (4.56)
U 3

Finally, for gust response problems Eq. 4.56 becomes

{'}--{u;o,,}+ [ ]
U 3

(4.57)

{ }where ug_s t is a vector composed of the desired incoming eigenmodes.

The goal is to eliminate incoming waves from the solution. Hence after each
basic Lax-Wendroff iteration, the solution at the upstream boundary is found using

Eq. 4.56 (for flutter calculations). The matrices Tll and T12, however, are constructed

first by setting the entries of [A] to zero that correspond to incoming modes before

applying Eq. 4.55. This has the effect of eliminating the incoming characteristics

from the solution at the inflow boundary. Note that the matrices Tn and T12 need to

be computed just once before the start of the Lax-Wendroff iteration procedure. At

each iteration, the far-field nonreflecting boundary conditions require only a relatively

small matrix/vector multiply.

4.4 Summary

In this chapter, three separate far-field analyses were presented culminating with

the development of a new, numerically exact nonreflecting boundary condition which

eliminates all reflections. Furthermore, although these boundary conditions were de-

veloped for the two-dimensional llnearized Euler analysis, the technique is generic and
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can be applied to other flow models (e.g., the potential, and Navier-Stokes equations)

and can be to three-dimensional flows. In the next chapter, this far-field treatment,

along with the basic numerical integration scheme presented in Chapter 3, will be

used to investigate unsteady subsonic flows in compressors.



Chapter 5

Results

This chapter presents results calculated using the present linearized Euler method.

The cases selected show the ability of the present linearized Euler analysis to compute

accurately and efficiently the unsteady aerodynamic response of cascade blade rows

due to incident gusts as well as blade vibrations. The results obtained with the

present analysis are compared with those determined using previously developed semi-

analytical, numerical, and experimental methods.

5.1 Flat Plate

To validate the method, a number of unsteady flows about a cascade of flat plate air-

foils are computed. The results are compared with those obtained using Whitehead's

LINSUB code [55], which is based on Smith's compressible flat plate theory [43]. For

all the cases considered in this section, the mean flow through the cascade is uniform

with a Mach number, M, of 0.7. The stagger angle, O, is 45 °, and the gap-to-chord

ratio, G, is 1.0.

To begin, consider the case of an inlet distortion interacting with the flat plate

cascade. In the nonrotating reference frame, the flow is axial and steady with con-

stant total enthalpy. The axial velocity has a sinusoidally varying deficit with a

circumferential wavelength of two blade gaps resulting in an interblade phase angle,

o', of -180 °. In the rotating cascade frame of reference, the airfoils see an unsteady

gust with reduced frequency, k, (based on chord, c and upstream velocity, VT) of

2.221. Under these conditions the flow is superresonant, i.e., pressure waves with an

interblade phase angle, a, of +180 ° propagate in the far field. Any reflection of these

pressure waves off the far-field boundaries would cause an unattenuated wave to prop-

agate back into the computational domain, corrupting the solution. Therefore, this

case provides a good test of the nonreflecting boundary conditions. Figure 5.1 shows

the computed real and imaginary parts of the unsteady pressure difference across the

surface of the reference airfoil. The linearized Euler results shown were computed on

a 65 x 17 node grid and a 129 x 33 node grid. For comparison, Fig. 5.1 also shows

the essentially exact solution calculated using LINSUB. The linearized Euler solution

agrees very well with the exact solution, especially for the solution computed on the

59
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129 x 33 node grid. This good agreement demonstrates the effectiveness of the numer-

ically exact nonreflecting boundary conditions. Also note that the present linearized

method accurately predicts the square root singularity of the exact solution at the

leading edge.

In addition to the gust response problem, one would need to calculate the aero-

dynamic damping to complete the aerodynamic formulation of the forced response

problem. This can be accomplished by solving the blade motion problem. Consider

the case where the cascade of airfoils is plunging with an interblade phase angle, a,

of -180 °, and a reduced frequency, k, of 2.221. Figure 5.2 shows that the linearized

Euler analysis is in good agreement with the exact solution for this superresonant,

moderate reduced frequency case. Although for the present aerodynamic damping

analysis the computational grid deforms continuously with the specified motion of

the airfoils, the effectiveness of the moving grid is not readily apparent since the

mean flow is uniform and hence the error causing extrapolation terms do not appear

in the airfoil boundary conditions.

The last flat plate example considered is a cascade of airfoils subjected to an inlet

distortion with an interblade phase angle, a, of 270 °, and a reduced frequency, k, of

3.332. This corresponds to a superresonant distortion with a wavelength 1.333 times

the blade-to-blade gap. Figure 5.3 shows the computed real and imaginary parts of the

unsteady pressure difference across the surface of the reference airfoil. The agreement

for this case is not as good for the previous two cases although the solution clearly

approaches the analytical solution as the grid resolution is increased. It appears from

these results that the scheme as currently implemented gives second-order accurate

solutions. For example, one observes that doubling the grid resolution reduces the

error by approximately a factor of four. Also, the errors are more pronounced at

high reduced frequencies. This can be attributed to the fact that at higher reduced

frequencies more resolution is required to resolve the short wavelength modes.
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5.2 Tenth Standard Configuration

Having demonstrated the accuracy of the method for a flat plate geometry, we now

consider the unsteady flow in a more realistic compressor geometry. The purpose

of these test cases is to demonstrate the ability of the present method to compute

accurately the unsteady flows over loaded airfoils. In addition, the efficiency of the

method, and the effectiveness of the far-field boundary conditions will be examined.

The geometry considered in this section is a cascade of cambered airfoils with a

slightly modified NACA 0006 thickness distribution. The airfoil has a circular arc

camber distribution with a maximum height of 5 percent of the chord. The cascade

has a stagger angle, 0, of 45 ° and a gap-to-chord ratio, G, of 1.0. The mean inflow

angle, fl-oo, is 55 ° and the inflow Mach number, M_oo, is 0.7. Two computational

grids were used for this example: a 65 × 17 and a 129 x 33 node grid. Figure 5.4

shows the mean flow surface pressure distribution calculated using the present steady,

nonlinear Euler solver. These results agree well with the surface pressure distribution

computed using another steady Euler solver developed by Huff [31]. Note that the

maximum Mach number, M, on the suction surface is about 0.92.

Having computed the steady flow through the blade row, the unsteady flow due

to an inlet distortion in the nonrotating frame of reference is computed. For this

example, the interblade phase angle, _r, is -90 ° and the reduced frequency, k, is 1.287

corresponding to a disturbance with a wavelength in the circumferential direction of

four blade-to-blade gaps. In the stationary frame of reference the total enthalpy is
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constant. Figure 5.5 shows the calculated unsteady surface pressure distribution. The

good agreement between the 65 × 17 and 129 x 33 node grid solutions indicates that

the fine grid solution is nearly grid converged, i.e., the solution will not change with

increased grid resolution. Note that the solution is now well behaved in the vicinity

of the leading edge; the singularity is removed by the finite radius leading edge. Also

shown is the solution computed using a linearized potential code (LINFLO) [26]. The

overall agreement with LINFLO is good, although there is a slight discrepancy in the

real part of the solution on the suction surface.
Next, we consider a plunging motion of the compressor blades. For the first ex-

ample, the blades vibrate with an interblade phase angle, _r, of -90 °, and a reduced

frequency, k, of 1.287. Figure 5.6 shows the unsteady pressure distribution on the
surface of the reference airfoil found using the present linearized Euler analysis. The

figure also includes the results of the nonlinear time marching Euler analysis of Huff.

Figure 5.6 shows that thetwo analyses are in excellent agreement. Note that the solu-
tions are well behaved around the leading and trailing edges, regions that are difficult

to resolve accurately using fixed-grid methods. These results clearly demonstrate the

effectiveness of the deforming grid method for resolving unsteady flow features in

regions of large mean flow gradients, even using moderate resolution grids.

Also shown in Fig. 5.6 are linearized Euler solutions calculated on fixed (i.e.,

nondeforming) computational grids. For these solutions, extrapolation terms which

depend on mean flow gradients must be added to the airfoil boundary conditions and

to the expression for the unsteady surface pressure to account for the fact that the
airfoil vibrates through the stationary grid. Large errors are seen in the solutions

computed on the fixed grid, especially around the leading and trailing edges. These
errors are inevitable when using a fixed grid due to the difficulty in evaluating the

gradient of the mean flow field near the airfoil surface.
Finally, we consider a moderately high reduced frequency blade motion case to

demonstrate the current limitations of the method. For this case, the airfoils plunge

with an interblade phase angle, a, of -180 °, and a reduced frequency, k, of 2.573.

Figure 5.7 shows the computed unsteady surface pressure distribution. Also shown for

comparison are the results of a linearized potential analysis [21] and a time marching
Euler calculation. The potential solution, which was computed on an extremely fine

gird (200 x 50 nodes), is grid converged. The fine grid iinearized Euler calculation

is in very good agreement with the potential calculation. The coarse grid linearized

Euler calculation, on the other hand, differs significantly from the potential solution

on the suction surface. This is to be expected since on the suction surface, where

the Mach number is large, upstream travelling pressure disturbances have very short

wavelengths that are difficult to resolve. Of course, adequate grid resolution is essen-

tial for both nonlinear and linearized analyses.

Figure 5.8 shows the computed unsteady pressure contours for this blade motion

case. Of particular interest is the behavior of the solution in the far-field region. For

this example, the flow is superresonant upstream and subresonant downstream. In

both the upstream and downstream far-field regions, the pressure contours are seen

to pass smoothly out of the domain without reflection demonstrating the effectiveness

of the far-field nonreflecting boundary conditions.
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Figure 5.8: Unsteady pressure contours for cascade of Tenth Standard Configuration

airfoils undergoing an unsteady plunging motion: k = 2.573, _r = -180 °
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To further substantiate the effectiveness of the far, field boundary conditions, the

same case was computed again. This time, however, the far-field boundaries were

placed farther away from the blade row of interest. The unsteady surface pressures

computed in the lengthened computational domain are compared to those previously

computed and are shown in Fig. 5.9. The results indicate that the close proximity of

the far-field boundary does not affect the unsteady pressure distribution. Addition-

ally, by moving the boundaries closer to the blade row of interest, fewer computational

nodes and hence computational resources are required to solve the problem.

Figure 5.10 shows the convergence histories for this flutter calculation (on the

deforming grid) using the basic Lax-Wendroff solver alone and with Ni's multiple-

grid acceleration technique. The convergence criteria is that the L2 norm of the

pu corrections be less than 5.0 × 10 -s. Without the multiple-grid accelerator, the

linearized unsteady Euler analysis required 6433 iterations to converge. With three

levels of the multiple-grid accelerator, the linearized unsteady Euler analysis required

just 773 iterations corresponding to about 14 minutes on a Stardent 3000 workstation.

The nonlinear time marching solution, on the other hand, required 7384 iterations

and approximately 88 minutes on a CRAY-YMP. When taking into consideration the

difference in speeds of the two computers, one concludes that the linearized Euler

analysis is nearly two orders-of-magnitude faster than the nonlinear analysis while

still modeling the essential features of the unsteady flow. Additionally, for cases

considered thus far, the multiple-grid accelerator works as well for the linearized

unsteady Euler analysis as for the nonlinear, steady Euler analysis. The reduction

seen in iteration count by additional multiple grid levels is approximately the same

for both the steady and unsteady analyses, and both require approximately the same

number of iterations to reach convergence.

Finally, having computed the unsteady pressure distribution on the airfoil surface,

one can integrate to obtain the unsteady pitching moment and hence draw a conclu-

sion about the flutter stability of the cascade (a positive imaginary part corresponds

to negative aerodynamic damping). Shown in Fig. 5.11 is the imaginary part of the

pitching moment for a cascade of Tenth Standard Configuration airfoils computed

for a range of interblade phase angles, a, from -180 ° to +180 °, and at a reduced

frequency, k, = 0.5. These results were obtained using a 65 × 17 node computational

grid. Also shown is the pitching moment computed using Hall's linearized potential

method. The peaks in the solution are acoustic resonances. Note that there is gen-

erally good agreement between the linearized Euler and linearized potential solution.

The good agreement (particularly in the superresonant regions) further substantiates

the effectiveness of the far-field boundary conditions.

5.3 First Standard Configuration

In order to further validate the present method, we consider the case of a low speed

compressor cascade known as the First Standard Configuration. This cascade was

studied experimentally by Carta [10] and provides a good test of the present method's

ability to predict the unsteady aerodynamic loading due to blade motion. The cascade
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is composed of airfoils which have 10 ° of camber and are 6 percent thick. The stagger

angle, O, is 55 ° and the gap-to-chord ratio, G, is 0.75. The reported inflow angle,

12_oo, is 66 ° and the inflow Mach number, M-co , is 0.17. Figure 5.12 shows the

steady surface pressure distribution calculated with the present nonlinear, steady

Euler solver in addition to the experimentally measured values. For the unsteady

case considered here, the airfoils vibrate in pitch about a point near their midchords

with a reduced frequency, k, of 0.244 and an interblade phase angle, a, of -90 °. The

computed unsteady surface pressure is shown in Fig. 5.13 along with the experimental

results of Carta. The computational results were obtained using a 129 x 33 node grid.

Overall, the agreement between the present analysis and the experiment, while not

exact, is qualitatively very good.

5.4 Summary

The results obtained using the present linearized Euler analysis validated the present

method against previous analytical, numerical, and experimental results. First, the

flat plate cases studied were compared with an analytical solution computed using

Whitehead's LINSUB. The excellent agreement proved that at least for fiat plate cas-

cades, the present linearized analysis can accurately and effectively calculate the un-

steady aerodynamic forces for both the forced response and flutter problems. Next, a

cascade of loaded airfoils (the Tenth Standard Configuration) was analyzed for several
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unsteady operating conditions. The results agreed well with Hall's linearized poten-

tial as well as Huff's time-accurate time-marching unsteady Euler analysis. Finally,

results from the present method were compared with Carta's experimental data (First

Standard Configuration). Based on these comparisons, the present analysis appears

to be accurate for a variety of geometries and flow conditions. In addition to accu-

racy, the results accompanying the Tenth Standard Configuration illustrated several

important features of the present method. These include: (1) the far-field boundary

conditions effectively eliminate spurious reflections, (2) the continuously deforming

unsteady grid has effectively eliminated error producing extrapolation terms inherent

in fixed grid calculations, and 3) the present linearized analysis has taken advantage

of traditional computational acceleration techniques such as multigrid acceleration

and local time-stepping. The conclusions drawn from these results are as follows.

First, linearized analyses are indeed a viable method for the accurate prediction of

unsteady loading in turbomachinery applications. Secondly, the computational effi-

ciency makes linearized methods preferable to time-accurate time-marching methods

as long as the small motion assumption of the linearized analyses is not violated.



Chapter 6

Transonic Theory

6.1 Introduction

In recent years, a number of linearized flow analyses have been developed to compute

unsteady flows in cascades, especially the unsteady flows that produce the aeroelastic

phenomena of flutter and forced response. The unsteady aerodynamic loads acting

on transonic airfoils in cascades are composed of two parts: the unsteady pressure

distribution away from the shock, and a "shock impulse" load that acts where the

shock impinges on the airfoil surface. This shock impulse arises from the unsteady

motion of the shock. Accurate prediction of the shock impulse is important since

the unsteady aerodynamic load due to the shock impulse is of the same order as the

unsteady aerodynamic loads due to the unsteady pressure away from the shock. In

viscous flows, the shock is smeared near the airfoil surface due to shock/boundary

layer interaction and hence, strictly speaking, no shock impulse exists at the surface.

Away from the airfoil, however, the shock wave is very thin, typically on the order

of a few mean free paths thick, and the concept of a shock impulse is important in

connecting the regions of smooth flow on either side of the shock.

Verdon et al [48,50] and Whitehead [51,55] have developed linearized potential

analyses of two-dimensional subsonic and transonic flows in cascades. Both Verdon

and Whitehead have used shock capturing to model unsteady shock loads. Verdon

has also used shock fitting in his linearized potential analysis to explicitly model the

shock motion. Because of the assumption of isentropic and irrotational flow, however,

these potential analyses cannot be used to model unsteady flows with strong shocks,

flows with shocks that span the blade passage, or general three-dimensional flows. For

this reason, investigators have begun to develop linearized Euler analyses of unsteady

cascade flows [22,24,29,32]. Hall and Crawley [24] have shown that shock fitting can be

implemented within the framework of a linearized Euler analysis to model accurately

the unsteady motion of shocks. However, due to the inherent complexity of shock

fitting algorithms, one would prefer to use the simpler shock capturing technique to

model the shock impulse.

While shock capturing is favored for its simplicity, it has only recently been shown

that the shock impulse load can be modelled properly using shock capturing within a

linearized framework. There are two approaches that have been suggested for obtain-

76
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ing discretizations of the linearized Euler equations. The first approach, referred to in

this chapter as Method I, is to first discretize the nonlinear unsteady Euler equations

and then linearized the resulting finite difference equations. The second approach,

Method II, is to first linearize the nonlinear unsteady Euler equations, then discretize

the resulting linearized equations using traditional finite difference or finite volume

techniques. Lindquist and Giles [35,36] have argued that the unsteady shock loads

will be correctly predicted provided the linearized code is a Method I type tineariza-

tion of a time-accurate, conservative, nonlinear flow solver. Their results thus far,

however, have been limited to quasi one-dimensional channel flows. Furthermore,

they do not discuss the conditions under which Method II linearizations will properly

model the shock impulse.

The objectives of this chapter are twofold. First, we demonstrate mathematically

and by numerical experiment that the requirement put forth by Lindquist and Giles

that the linearization be a Method I linearization of an unsteady nonlinear scheme

is too stringent. We show that Method II linearizations will also work so long as

the finite difference representation of the linearized Euler equations is conservative.

Second, having demonstrated that conservative Method II linearizations may be used

to properly model the unsteady shock impulse, we present a linearized Euler analysis

(Method II type) of unsteady two-dimensional flow in cascades. Ni's Lax-Wendroff

scheme [37] is used to obtain a finite volume representation of the unsteady linearized

F,uler equations. Computational results are presented for both and two- and three-

dimensional unsteady transonic flows in cascades. Some of these calculations are

compared to those computed using a nonlinear time-marchlng shock capturing Euler

analysis. It is shown that the present unsteady linearized analysis agrees quite well

with the nonlinear analysis, and further that the present linearized analysis is nearly

two orders-of-magnitude more efficient than the nonlinear analysis. The computed

results also demonstrate that the unsteady shock loads can provide a destabilizing

influence on the flutter stability of cascades.

6.2 Theory

6.2.1 Flow Field Description

In this chapter, we again assume that the unsteady flow is inviscid and adiabatic, and

that the unsteady flow in a cascade may be modelled by the Euler equations. For a

two-dimensional Cartesian coordinate system, the Euler equations are given by

00 a(2
o---T+ + 0-T = 0 (6.1)
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where 0 is the vector of conservation variables, F, and G are the so-called flux

vectors. These vector quantities are given by

_e _= (_=
= _ , )a_ , _2 + _ ,

where _ is the density, _ is the pressure, fi and _ are the x and y components of

velocity, _ is the internal energy, and h is the enthalpy. The pressure, /_, and the

enthalpy, h, are given by

and
1

_=_+P _ P+ (_+_2)

Next, we would like to determine the small disturbance behavior of Eq. 6.1 due

to, for example, the fluttering motion of the blades of the cascade. To improve the

accuracy of these calculations, a number of investigators have proposed the use of

a harmonically deforming computational grid [22,23,29]. The motion of the grid is

defined by

x(_,r/,r) = _ + f(_,r/)e j_' (6.2a)
y(_,r/,r) = )7+g(_,r/,)e j_' (6.2b)
t(_,_,_) = _ (6.2c)

where w is the frequency of vibration of the blades, and where f and g are the

perturbation amplitudes of the grid motion about the mean positions, ( and 77. Having

defined the grid motion, the unsteady flow field is represented by the perturbation

series

l_l(_, 77,r) = U(_, r/) + u(_, r/)e j_t (6.3)

Substitution of Eq. 6.3 into Eq. (6.1) and collection of the terms that are first-order

in the perturbation u results in the linearized Euler equations,

0(0F)0(0 )jwu+_ _--_u +_ _-_u =b (6.4)

where b is a fairly complex expression which depends on the mean flow and the

prescribed grid motion.

6.2.2 Numerical Modelling of the Shock Impulse

The first question we address in this chapter is: What is the proper way to discretize

and linearize the Euler equations in such a way that the linearized finite difference or
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finite volume equations properly predict the shock impulse loads that result from the

unsteady shock motion. There are two obvious approaches one can take to obtain a

discretization of the linearized Euler equations. One approach (Method I) is to first

discretize the nonlinear Euler equations and then linearize the resulting nonlinear

finite difference equations. The other approach (Method II) is to first linearize the

nonlinear Euler equations then discretize the resulting linearized equations. We claim

here that both approaches will produce the correct result provided that the resulting

difference equations are conservative (we give a more precise definition of what con-

servative means in the linearized case shortly). A mathematical justification of this

conjecture is given below.

Due to the complexity of the two-dimensional Euler equations, we consider the

simpler one-dimensional model equation given by

or) oP (6.5)
0--7+ 5;; + BP=O

where P = _'(U),/5 =/5(_r), and B = B(x). This model equation is very similar in

form to the quasi-one-dimensional Euler equations which describe flow in a channel

with a spatially varying cross sectional area. Since F and/5 are in general nonlinear

functions of the conservation variable U, this model equation is nonlinear.

As before, we model the conservation variable U as the sum of a mean part U

plus a small harmonic perturbation uei,,t. The mean solution is solution is governed

by OF

0_ + BP = 0 (6.6)

where F = F(U) and P = P(U). The linearized unsteady model equation is given by

0(o,) o,jwu +-_z -_u + B-_u=O (6.7)

where u is the perturbation solution, and OF and 0Pg'O _ are steady flow Jacobians.

Returning for the moment to the unsteady nonlinear model equation, Eq. 6.5, it

is well known that because the model equation is nonlinear, it will in general admit

genuine solutions, that is, solutions with flow discontinuities. In smooth regions of

the flow, the genuine solutions satisfy the differential equation, Eq. 6.5. The weak

solution is that genuine solution which also satisfies the integral relation

(6.8)

for every test function g(x, t) which vanishes for large x or t and which has continuous

first derivatives [33,34]. One can then show that the unsteady Rankine-Hugoniot

shock jump conditions at flow discontinuities are given by

[[01]-[[p]]-0
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where the symbol [[-..]] denotes the jump in the enclosed quantity across the shock,

and X, is the velocity of the shock.

If one then considers an unsteady flow with small harmonic unsteadiness, one may

linearize Eq. 6.9 to obtain the linearized shock jump conditions [24].

where u is the small disturbance part of the unsteady flow and x_ is the small complex

amplitude of the shock motion. Noting that the steady flow solution is given by

OF/Ox = -BP, Eq. 6.10 may be rewritten as

]]j_,[[u]]- 8-j_, +x,B[{Pl]-O (6.11)

A graphical interpretation of Eq. 6.11 is shown in Fig. 6.2.2. Shown are the mean

and unsteady flow shock trajectories as well as the resulting unsteady flow, U, the

mean flow U, and the perturbation flow, u. The latter is just the difference between

the unsteady and mean flows, u = U - U. Note that near the shock, an impulse in u

appears due to the motion of the shock. In the limit as the unsteadiness in the flow

tends toward zero, the integrated value of this impulse is given by

f Xs+eI,, - udx = -x, [[U]] = -x_ (U2 - U1) (6.12)
J Xs-e

Finally,Eq. 6.11 may be written as

]]jwI,, + --_u + BI v= 0 (6.13)

We presently demonstrate that the weak solution of the linearized unsteady model

equation, Eq. 6.7, produces an equivalent shock jump condition. Multiplying Eq. 6.7

by a test function g(x) and integrating the result over the solution domain x E [0, L],

we obtain

g(x) wu +-_z -_u + B-_-_u dx = O (6.14)

Integration by parts applied to the middle term in Eq. 6.14 gives

'_g'_ d=0U_ + gB_-5,, d=+ %-5" o = o (6.15)

Next we let the test function g(x) be given by

1 if X,-e<_x<_Xs+e (6.16)g(x)= 0 otherwise

where X, is the mean shock position and e is a small positive number. Differentiating

Eq. 6.16 with respect to x gives

= _[x- (x, - ,)1- 6[_- (x. + ,)1 (6.17)
dx
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where (_[...] is the Dirac delta function. Substitution of Eqs. 6.16 and 6.17 into

Eq. 6.15 gives the desired shock jump conditions of the linearized unsteady model

equation,

j_ _d=+ _ + B ?--j_dx- 0 (6.18)
J X_ -e s-e

The integrals in Eq. 6.18 are the areas under the impulse in u and the impulse in

p, the perturbations in the conservation variable and pressure, respectively, and are

denoted here by I,_ and Ip (See Fig. 6.2.2).

Finally then, we may write the Rankine-Hugoniot jump conditions for the lin-

earized unsteady Euler equations as

jwI,, + -_u + BIp= O

This expression is identical to Eq. (13) thus demonstrating that the weak solution to

the linearized unsteady model equation is the same as the linearized weak solution of

the nonlinear model equation.

We conclude, therefore, that for a finite difference scheme to properly model the

linearized unsteady model equation, the finite difference scheme must be stable and

consistent and satisfy the condition given by Eq. 6.15 in the limit as Ax and At tend

toward zero. In other words, the order of linearization is immaterial; what matters

is whether the resulting discretization is conservative. Note that this condition is

less stringent that the condition suggested by Lindquist and Giles [35,36] that the

discretization be both conservative and a Method I linearization. Also note the im-

portance of the area of the impulse. When capturing the shock impulse, the width

and height of the impulse will depend on the amount of smoothing (or artificial vis-

cosity) in the numerical scheme. The area under the impulse, however, should be

independent of the smoothing.

6.2.3 Method I and Method II Linearizations

To illustrate the difference between Method I and Method II linearizations, we con-

sider again the model equation given by Eq. (5) with the source term set to zero

(B = 0).

Method I Linearization

Consider the discretization of the nonlinear unsteady model equation, Eq. (5), using

the Lax-Wendroff scheme. The one-dimensional computational grid is assumed to

have constant cell size Ax and constant time step At. The solution at time level

n + 1 is found by Taylor expanding the solution about time level n to obtain

u,.+_= O_+ _t ot l, + 2 at2 I, + o(/,t3) (6.20)
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where i denotes the ith grid node in the x-direction. The time derivatives in Eq. 6.20

are obtained by manipulation of the original model equation, Eq. (5). Rearranging

Eq. (5) gives

00 0/'(0)
0t 0z

Differentiating Eq. 6.21 with respect to time gives

0=_ o (opoM 0(or0r_
=-_ t,_) =_ t,_)

Next, substitution of Eqs. 6.21 and 6.22 into Eq. 6.20 yields

(6.21)

(6.22)

(_+1 0.' 0F " At 2 0 0_" -I- O(At 3) (6.23)
= ,-ate+ _ $x -g5_

Finally, using centered finite difference expressions to approximate the spatial deriva-

tives, the familiar Lax-Wendroff finite difference equation is obtained, i.e.,

- ooA,V+,-:_ A,:[oVl- opo ]_,j+_ (_,;,-p,o)_ (_,__p=)u,o+,= , -_-; LOUl,+,/: oo ,_,/_ '-'
(6.24)

The Lax-Wendroff scheme above is second-order accurate [O(Ax2, At2)] and is con-

servative (since by assumption Ax and at are constant). A Fourier stability analysis
indicates the scheme is stable for CFL numbers less than unity. Lax [33] and Lax

and Wendroff [34] have shown that if the conservative form of the Euler equations is

used, and the discretization of the Euler equations satisfies numerical conservation,

and further that the scheme is consistent and stable, then the shock wave speed and

strength will be correctly predicted. The Lax-Wendroff scheme above satisfies these

conditions and therefore will correctly predict the unsteady shock motion.

Next, we would like to determine the behavior of Eq. 6.24 when the unsteadiness

in the flow is small compared to the mean flow field. Since the resulting equations will

be linear, we may without loss of generality assume that the flow field is composed

of a nonlinear steady mean flow and a small perturbation harmonic unsteady flow so

that

U(x,t) = U(z) + u(z)e j'n (6.25)

where u is much smaller than U. When viewed on our computational grid, Eq. 6.25

becomes

_,_ = g, + uieJ .,At,, (6.26)

Substitution of Eq.6.26 into Eq. 6.24 and collecting terms of first order in the per-

turbation quantity u gives the desired discrete small disturbance behavior of the

nonlinear finite difference equations,

OF

or O-'U [i-1 ui-1](1--e' '`A') u, 2_xat [__._1,+1U,+l_
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L[°'FI °'FI .]4- "_l_+_/2ui+l12(P_+l - F_) - -_[,_l/2ui_l/;(F_ - F__I) = 0 (6.27)

Equation 6.27 describes the small disturbance behavior of the nonlinear Lax-Wendroff

equation. One interesting feature of Eq. 6.27 is the appearance of the terms involving

02P/OU2. These terms appear because of nonlinearities of the Lax-Wendroff scheme

itself rather than nonlinearities of the Euler equations.

For a one-dimensional problem, Eft. 6.27, along with appropriate inflow and out-

flow boundary conditions, could be assembled into a tridiagonal matrix equation

which could then be solved quite efficiently using Gaussian elimination (the Thomas

algorithm). For two- and three-dimensional problems, however, this approach would

be computationally expensive and require large amounts of computer storage. For

these reasons, an iterative solution technique is preferred. The following explicit

relaxation procedure is proposed:

u9+1 - u _. 4- 5u_ (6.28)
1 1

where 6u i is the left-hand side of Eq. 6.27. As Eq. 6.28 is marched in time, a steady

state value of u" will be obtained and the solution to Eq. 6.27 will be recovered.

This procedure is similar to the pseudo-time time-marching technique proposed by

Ni and Sisto [39] for solving the linearized Euler equations. Equation 6.27 can be
shown to be consistent with the linearized model equation, Eq. (7), with truncation

errors which are O(Az 2, At2). A Fourier analysis of Eq. 6.28 reveals that the scheme is

unconditionally unstable if w is non zero. A spectral radius stability analysis, however,

that takes into account the stabilizing effect of the far-field boundary conditions shows

that the scheme is stable for CFL numbers less than unity [12].

Method II Linearization

An alternative approach to Method I is to first linearize the nonlinear unsteady flow

equations, and then discretize the resulting linear equations. To illustrate this ap-

proach, we return again to the one-dimensional model equation given by Eq. (5)

and, introducing the pseudo-time assumption of Ni and Sisto [39], assume that the

unsteady flow U(x, t) is composed of a nonlinear mean flow, U(x), plus a small un-

steady harmonic perturbation flow, u(z, t)e jwt, so that

fJ(x,t) = V(x) + u(z,t)e jw' (6.29)

Substitution of Eq. 6.29 into Eq. (5) and collection of first-order terms results in the

pseudo-time linearized model equation

Ou+jwu+ 0 ( OF )O-"t- _x -_u = 0 (6.30)
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Note that Eq. 6.30 is now hyperbolic in time so that it can be marched in time.

Furthermore, as time advances, u will reach a steady-state value so that the solution

to Eq. (7) will be recovered.

The next step is to discretize the linearized equation using the Lax-Wen&off

scheme. Manipulation of Eq. 6.30 gives

Ou _jwu_ 0 (OF)o--7= G -$64
(6.31)

and

-_ = -w2u + 2jw -_-_u + -_z "_ O'z -_u (6.32)

Finally, making use of centered spatial derivatives and substitution into the Taylor

expansion, Eq. (20) gives the desired Lax-Wen&off formula,

j_zxt
[u n +2u?+u _ ]_ At u"z i+I _ i--I

6u_ = 4 i+l i--I 2Ax -ff_ i+112 _-112

w2At2[u,, +2up+u n ]8 ;+1 i-1

+2-GF _ _ ,+1- _ 4?

0T 0T 4-- _ i-1-_ i-,2 -_ i ' i-1

As in the Method I discretization [Eq. (27)], the Method II discretization [Eq. 6.33] is

consistent with the linearized model equation [Eq. (7)] with truncation errors which

are O( Ax 2, At2).
Note that the Method II discretization [Eq. 6.33] differs significantly from that

obtained using Method I [Eq. (27)]. In particular, the unsteady terms involving w

are somewhat different, and the quasi-steady terms involving 02F/OU 2 in Eq. (27)

do not appear in Eq. 6.33. Clearly, the order in which the linearization is performed

is important in determining the precise form of the difference equations.
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6.2.4 Test for Linearized Conservation

Consider the Method I discretization of the model equation, Eq. (27). The one-

dimensional computational grid has M nodes. To test for conservation, Eq. (27)

is multiplied by g_Ax/At (where g_ = g(xi)) and summed over the computational

domain. After some manipulation including summation by parts, one can show that

this sum is given by

(1 -- e jwt) M M-1 IoF2Ax OU i
i=1 i=2

uo+O(Az, At)

(6.34)
In the limit as At, Ax --_ 0, Eq. 6.34 approaches Eq. (15). Therefore, this Method

I linearization of the Lax-Wendroff scheme is conservative (at least for the case con-

sidered here of constant At, Ax). A similar analysis of Method II reveals that is also

conservative. Hence, both methods should correctly predict the shock impulse.

6.3 Results

6.3.1 Transonic Channel Flow

To test the present linearized Euler analyses, we first consider the transonic flow

through a diverging channel. This case is presented to demonstrate the ability of

the linearized Euler method to model shock motion accurately using shock capturing.

We will demonstrate that both Method I and Method II linearizations will produce

satisfactory results so long as they are conservative.

The channel considered here has a height, A, given by,

A(z)= A,_,a(1.10313+O.lO313tanh [lO(x_l)]l,O<x<_l (6.35)

(The units may be taken to be any consistent set of units.) So that we may compare
the results obtained by the present method to those obtained by a one-dimensional

shock-fitting theory, A_,,ta is taken to be small compared with the channel length

(Airier = 0.01). The inflow total pressure, PT, total density, PT, and flow velocity,

U, are 1.0, 1.364, and 1.0 respectively. The back pressure, P_it, is 0.7422. Shown in

Fig. 6.3.1 is the Mach number and pressure distribution as computed using the present

nonlinear steady Euler solver on a 129 × 5 node computational grid. The grid was

generated so that the computational cells all have the same area, AA. The time step,

At, used in these calculations was constant throughout the computational domain
unless otherwise noted. Constant At and AA were chosen because Ni's scheme is only

conservative if the ratio At/AA is constant throughout the computational domain.

Also shown for comparison in Fig. 6.3.1 is the solution determined using a steady

quasi-one-dimensional, shock-fitting Euler solver using 1001 grid nodes in the x-
direction. The shock-fitting Euler solution is grid converged and may be taken to
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be the exact solution. Note the excellent agreement between the two different ap-

proaches. The only noticeable differences occur at the shock, where the present

nonlinear Euler analysis distributes the shock over about five grid nodes.

Next, we consider a quasi-steady perturbation in the back pressure. The pertur-

bation solution was calculated using four different approaches. First, the solution

was calculated using a quasi-one-dimensional, shock-fitting, linearized Euler analysis.

This solution was computed on an extremely fine grid (1001 nodes in the x-direction)

and is essentially the exact solution. Next, the present nonlinear steady Euler solver

was used to compute two nonlinear solutions at slightly different back pressures.

These two solutions were then subtracted one from the other and the result was

normalized by the difference in back pressures to obtain the perturbation solution.

Finally, the solution was determined using the present linearized Euler analysis (both

Methods I and II). It should be noted that for this comparison the usual nonreflecting

boundary conditions were replaced with reflecting boundary conditions. Upstream the

perturbation in total pressure and density as well as the inflow angle was set to zero.

Downstream the perturbation in static pressure was prescribed. These boundary con-

ditions for this model problem were chosen for their simplicity and are not meant to

model any real physical system. The results of these various approaches are shown in

Fig. 6.3.1. As expected, all of the solutions are in excellent agreement in regions away

from the shock. At the shock, however, the methods using shock-capturing produce

an impulse of pressure. This impulse arises from the shock displacement. The area

under the impulse is equal to the product of the shock displacement and the mean

pressure jump across the shock. The shock impulse then represents the load exerted

on the wall due to the motion of the shock. Also shown in Fig. 6.3.1 is an enlarged

view of the shock region. Note that the computed results from the Method I and

Method II linearizations are virtually identical to the perturbation of the nonlinear

Euler analysis.
To further validate the linearized shock capturing technique for unsteady flows, we

computed the unsteady pressure distribution due to an unsteady perturbation in back

pressure with an excitation frequency, w, of 1.0. The results are shown in Fig. 6.3.1.

The Method I and Method II results are indistinguishable from one another and are

therefore plotted with a single symbol. Also shown are the results of a quasi one-

dimensional, unsteady, shock-fitting, linearized Euler solver. Away from the shock,

the results agree quite Well with the Method I and II results. At the shock, the present

Method I and II solutions show an impulse. This impulse represents the unsteady

load acting on the channel wall due to the motion of the shock.

To determine whether the present linearized Euler solver correctly predicts the

unsteady loads induced by the shock motion, the pressure was integrated over the

lower channel wall to determine the net wall force. The results from this analysis are

tabulated in Table 6.1 for several different frequencies. Also tabulated in Table 6.1

is the wall force computed using the linearized unsteady shock-fitting code. The

agreement between the conservative form of the Method I and Method II analyses are

seen to be in almost perfect agreement with the shock fitting scheme for all frequencies

suggesting that the shock impulse found using shock capturing is properly modelled.

Even in the higher frequency cases the agreement is quite good, although there is
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Table 6.1: Predicted pressure loads in a transonic diverging channel due to an un-

steady perturbation in back pressure using a uniform area computational grid.

Frequency, w Scheme Wall Force

0.0 1D Shock Fitting 1.0305 Z 0.0 °
Nonlinear Euler a 1.0346 Z 0.0 °

Method I 1.0273 Z 0.0 °

Method II 1.0273 Z 0.0 °

1.0 1D Shock Fitting 0.6390 Z - 78.7 °
Method I 0.6353 L - 78.8 °

Method II 0.6354 / - 78.8 °

Method I 0.5397 / - 46.6 °

Method II 0.6229 L - 84.9 °

Nonconservative b

Nonconservative c

2.0 1D Shock Fitting 0.1974 Z - 114.1 °
Method I 0.1983 Z - 113.6 °

Method II 0.1984 Z - 113.6 °

aResults from the steady analysis were found for two slightlydifferentback pressures.

The two solutions were then differenced and normalized by APexit.

bTime accurate time marching steady and unsteady solution on a nonuniform area

computational grid.

CLocal time stepping used in steady and unsteady analyses.

a slight error (about 0.5 °) in the phase of the wall force. It is believed that these

differences arise from the dispersion errors in the solution away from the shock rather

than from a limitation in shock capturing at high reduced frequencies.

Finally, for the co = 1.0 case, we deliberately made the Method I and II calculations

nonconservative to demonstrate that the shock impulse cannot be properly modelled

using a nonconservative algorithm. In the Method I calculation, the time step At

was held constant throughout the domain, but a grid with variable cell areas near

the shock was used. In the Method II calculations, the cell areas AA were constant

throughout the computational domain, but the time step used in each computational

cell was based on a local CFL number (local time stepping). In both cases, the ratio

At:/AA varies over the computational domain making the schemes nonconservative.

As shown in Table 6.1, the incorrect wall force is predicted whenever the scheme is

nonconservative. In the Method I case (see also Fig. 6.3.1), the phase of the wall force

is in error by about 32.2 °. The phase error in the Method II example is 6.1 °.

From these numerical results we conclude that both Method I and Method II

linearizations will produce satisfactory results if and only if the linearizations are

conservative. However, since the Method I linearization is predicated on the assump-

tion that a constant time step is used throughout the computational domain, this

precludes the use of Method I for most problems since it would be dii_cult and un-

desirable to generate computational grids with constant cell areas throughout the

computational domain. With the Method II analysis, we only require that At/AA

be constant for the scheme to be conservative. Therefore, for the remaining examples,
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we will use a conservative Method II analysis.

6.3.2 Unsteady Compressor and Fan Flows

Having demonstrated the ability of the present meth0_t to model transonic channel

flow, we next consider the unsteady flow in compressors and fans.

Tenth Standard Configuration

The first cascade considered is the Tenth Standard Configuration [9]. The airfoils of

this cascade have a NACA 0006 thickness distribution slightly modified so that the

trailing edge is wedged rather than blunt. The camber line is a circular arc with a

maximum height of 5 percent of the chord. The flow conditions are such that there

is a supersonic patch on the suction surface of the airfoil. The stagger angle, O, is

45 ° and the gap-to-chord ratio, G, is 1.0. The mean inflow angle, 8-oo, is 58 ° and

the inflow Mach number, M_oo, is 0.8. Figure 6.3.2 shows the computed coefficient of

pressure distribution along the airfoil surface calculated using the present nonlinear

steady Euler code. The grid used for this calculation was a 193 x 49 node H-grid with

a total of 193 nodes on the airfoil surface. Note in particular the transonic patch on

the suction surface of the airfoil. The present steady Euler solver captures the shock

over about five grid points. Also shown is the a nonlinear Euler solution provided by

Huff based on a flux difference splitting algorithm [30,31].

With the steady solution now known, consider the case where the airfoils plunge

with an interblade phase angle, a, of -90 ° and a reduced frequency, _ (based on the

upstream velocity and blade chord), of 1.287. Figure 6.3.2 shows the computed un-

steady pressure distribution on the airfoil surface using Method II linearization. The

impulsive shock load is clearly visible on the suction surface. Also shown for com-

parison is the pressure distribution computed using Huff's nonlinear time-marching

algorithm. The agreement between the present linearized analysis and the nonlinear

time-marching Euler analysis is excellent away from the shock. Shown in the table

insert in Fig. 6.3.2 is the magniitude and phase of the resulting unsteady lift. The

magnitude of the unsteady lift calculated using the two different approaches agrees

within about 2%; the phase differs by only about 3°. -N0te that the shock impulse

predicted by the p_resent unsteady lineafize d Eule r analysis is somewhat narrower

and taller than that predicted by the nonlinear code. The areas of the impulses,

however, are very nearly equal. Furthermore, the unsteady load due to the impulse

is of the same order of magnitude as the unsteady load due to the unsteady pressure

distribution away from the shock.

Because conservative Method II linearizations require that At/AA be constant

throughout the computational domain, the time step taken in a particular compu-

tational cell may be considerably smaller than the maximum permitted for stable

calculations. The result is that the convergence will be considerably slower than

if the local maximum permissible time step had been taken everywhere (local time

stepping). To overcome this problem, we use conservative time stepping in conjunc-

tion with multiple grid acceleration. Figure 6.3.2 shows the convergence histories for
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three linearized unsteady flow calculations for the previous example: one using local

time stepping with multigrid, one using conservative time stepping with multigrid,

and one using conservative time stepping with over-relaxation plus multigrid. Note

that over-relaxation reduces the computational time required by a factor of about 2.5

compared to conservative time stepping without over-relaxtion. Finally, we should

mention that a comparable nonlinear time marching algorithm would require about

20 to 50 times the computational time required by the global time step calculations

with over-relaxation and multigrid.

High Speed Cascade

The next case considered is a two-dimensional cascade of fan blades with a relative

inlet Mach number, M-oo, of 1.2, stagger angle, O, of 55 °, and blade-to-blade gap, G,

of 1.0. This case is presented to demonstrate the importance of moving shocks on the

aeroelastic response of fan blades. Figure 6.3.2 shows the steady pressure contours.

The solution was computed on a 129 × 33 node grid with a total of 129 nodes on

the airfoil surface. Figure 6.3.2 shows the computed isentropic Mach number on the

alrfoil's surface. The pressure rise due to the passage shock can be clearly seen on

both the suction and pressure surfaces. The shock is smeared over about four grid

nodes.
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Figure 6.8: Steady pressure contours, modified circular arc airfoil: M-oo = 1.2, G =

1.0, (_ = 55 °, fl,¢¢ 60 °



6.3. RESULTS 97

o
¢q

wto

tz

e_
E
-I
z
1- O

O.

2

¢_0 t¢3
o

q
o

0.0

• o-_====._ _ _ = _ c = = = = =:"_ --_'_"-'_- -

• Pressure Surface

I I I L

0.2 0.4 0.6 0.8

Distance Along Chord, _/c

1.0

Figure 6.9: Isentropic Mach number distribution, modified circular arc airfoil: M_¢o =

1.2, G = 1.0, E) = 55 °, g/-_o = 60 °



98 CHAPTER 6. TRANSONIC THEORY

04

Ed
{D

04

.g.
E¢o

¢5

Unstable

I I I , i
o,

-90 0 90 180 270
Interblade Phase Angle,

Figure 6.10: Imaginary part of moment coefficient for a range of interblade phase

angles, modified circular arc airfoil, pitching about midchord, w = 0.5.

Next, we computed the unsteady aerodynamic response of the cascade for a range

of interblade phase angles. The airfoils pitch about their midchords with a reduced

frequency, _, of 0.5. For each interblade phase angle, the computed unsteady surface

pressure was integrated to obtain the unsteady pitching moment. Shown in Fig 6.3.2 is

the imaginary part of the unsteady pitching moment as a function of interblade phase

angle. Positive imaginary pitching moments correspond to negative aerodynamic

damping which will produce flutter for tuned cascades. Note that for _r = 120 °, the

cascade is unstable.

Shown in Fig. 6.3.2 is the unsteady pressure for the case where the airfoils vibrate

in pitch with a reduced frequency, _, of 0.5 and interblade phase angle, cr, of 120 °.

Note that the unsteady aerodynamic load on the airfoil is dominated by the shock

impulses. The impulse acting near the trailing edge provides a positive contribution

to the imaginary part and hence is destabilizing. The impulse near the leading edge,

on the other hand, is stabilizing.
While these results demonstrate the importance of unsteady shock motion on the

unsteady aerodynamic behavior of the fan, it should be noted that whenever strong

in-passage shocks occur, viscous effects become important due to the large adverse

pressure gradient at the shock. The actual unsteady aerodynamic behavior may be

substantially different.
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6.4 Summary

In this chapter, we have presented a linearized Euler analysis of two-dimensional un-

steady transonic flows in channels and cascades. Two differe_nt types of linearization

were examined. Using Method I, the nonlinear Euler equations are first discretized

using a conservative, time-accurate Lax-Wendroff scheme. The resulting nonlinear
finite volume discretization is then linearized. Using Method II, the Euler equations

are first linearized and then discretized using a Lax-Wendroff scheme. It was shown

mathematically and by numerical experiment that the both Method I and Method

II linearizations correctly predict the unsteady shock impulse in transonic flows if

and only if the scheme is conservative; the order of linearization appears to be in-

consequential. When either the Method I or Method II discretizations were made

nonconservative by using a non-constant At/AA, the shock impulse was found to

be incorrectly predicted even though the methods are formally second-order accurate

and consistent with the linearized Euler equations.

Because a constant At/AA is required in the steady and unsteady flow calcu-

lations to insure conservation, the time step taken at a computational cell may be

significantly smaller than the maximum local permissible time step. This small time

step in turn slows convergence of the scheme. To overcome this difficulty, an over_

relaxation technique was proposed that dramatically improves the convergence rate

of the linearized Euler analysis while leaving the method fully conservative. When

coupled with Ni's multiple grid acceleration technique, the present linearized Euler

solver can compute unsteady transonic flows nearly two orders-of-magnitude faster

than a comparable nonlinear time-accurate time-marching solver.

A number of two- and three-dimensional unsteady transonic flows in cascades

were computed using the linearized Euler analyses. Where possible, these results

were compared to a nonlinear time-accurate time-marching scheme and found to be

in excellent agreement. Furthermore, the unsteady shock load was found to be a

significant contributor to the unsteady aerodynamic forces acting on the airfoil.



Chapter 7

Conclusions And Future

Considerations

7.1 Conclusions

The main goal of the present research was to develop an accurate and efficient com-

putational analysis that will enable aeroelasticians to understand unsteady aerody-

namic phenomena encountered in turbomachinery. Toward that end, a linearized

Euler solver capable of accurately determining the unsteady loads in cascades oper-

ating in strongly transonic flow regimes at moderate reduced frequencies has been

developed. The technique selected for both the present steady and unsteady analyses

is based on Ni's variation of the Lax-Wendroff scheme. A pseudo time dependence is

introduced into the governing equations making them hyperbolic in time. Therefore,

the resulting discretized equations can be marched in time using traditional CFD

techniques. Since a steady-state solution is desired in both the present steady and

unsteady analyses, the calculations are not restricted to time-accurate time marching

and acceleration techniques such as local time stepping and multiple grid accelera-

tion are used. The result is the method requires one to two orders of magnitude

less computational time than traditional nonlinear time-accurate time-marching al-

gorithms. In the course of development, the present method has incorporated three

major improvements not previously encountered in linearized analyses. These are:

(1) A continuously deforming computational grid is used which is capable of con-

forming to both rigid body and flexible blade motions. The use of a deforming grid

eliminates error producing extrapolation terms that would otherwise appear in the

flow tangency (solid surface) boundary condition, substantially increasing the accu-

racy of the method.

(2) Numerically exact nonreflecting boundary conditions were developed that elim-

inate all spurious reflections of outgoing pressure, entropy and vorticity waves in the

far field. The new boundary condition formulation is quite general and can be applied

to other flow models (such as the potential and Navier-Stokes equations) and can be

extended to handle fully three-dimensional flows.

(3) Numerical computations demonstrated the ability of the present method to

predict accurately the unsteady loads associated with transonic operating conditions

I01
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using a linearized shock capturing technique. Until recently, many researchers be-

lieved transonic unsteady flows to be fundamentally nonlinear, violating traditional

small disturbance assumptions. In particular, questions have arisen as to whether

strong in-passage shocks could be modeled within the framework of a linearized anal-

ysis. The present research has demonstrated the ability to predict accurately the

unsteady loading in such cases provided a conservative linearization is used.

7.2 Future Considerations

There are three issues left to address before the present two-dimensional linearized

Euler analysis is complete:

(1) Quasi-three-dimensional effects, due to variations of streamtube height, need

to be incorporated into the present analysis. Modeling of realistic compressor and

turbine stages requires the capability of specifying changes in streamtube height.

Although the present method still will not be capable of analyzing fully three- dimen-

sional geometries, the additional physics being modeled will improve the usefulness

of the present analysis as a design tool.

(2) A more efficient algorithm needs to be developed to compute the eigenmodes of
the linearized unsteady flow solver in the far field. The application of the numerically

exact far-field boundary requires the solution of a sparse generalized complex eigen-

value problem. The present analysis uses a standard eigenvalue solver (EISPACK)

which does not take advantage of the sparseness of the far-field matrices. Since the

far-field eigenanalysis currently requires approximately 25% of the total computa-

tional time (for a 65 × 17 node grid) significant gains in sp_d can be obtained if a

more efficient eigensolver were used that takes advantage of sparseness and the known

analytical eigenmode shapes, i i ::_:::::_i_ _:_ _ _7; _= - _ .....:_

(3) To further validate the capabilities of the present !inearized method to predict

unsteady loads in cascades, additional comparisons to experimental data are required.

Although some comparisons have been made and the results are very encouraging,

the extent to which the code can accurately predict unsteady loading still needs to

be quantified.

Finally, in future work viscous effects need to be modeled within a linearized

framework. Viscous effects are essential if one is to model transonic flow problems

with passage shocks since viscous forces help fix the location of the shock. Addition-

ally, flow problems where separation occurs, as in the case of stall flutter, cannot be
modeled within the framework of inviscid analyses. It should be possible to extend

the Iinearized approach developed in this research to the Navier-Stokes equations and

to inviscid/viscous interaction models.
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